Solveeit Logo

Question

Question: in a hypothetical situation 1 unit of mass is equal to 10 kg 1 unit of length = 5 M the unit of time...

in a hypothetical situation 1 unit of mass is equal to 10 kg 1 unit of length = 5 M the unit of time equal to 2 second find 1 unit of force on the system solve by this n2=n1[m1/m2]×...

Answer

1 unit of force = 12.5 N

Explanation

Solution

Explanation of the Solution:

Force (F) is defined by Newton's second law as the product of mass (M) and acceleration (A). Acceleration is length (L) divided by time (T) squared (L/T2L/T^2). Therefore, the dimensional formula for force is F=MLT2F = M \cdot L \cdot T^{-2}.

In the SI system, 1 Newton (N) is defined as the force required to accelerate a mass of 1 kg by 1 m/s². So, 1 N=1 kgm/s21 \text{ N} = 1 \text{ kg} \cdot \text{m/s}^2.

We are given the following relationships between the new hypothetical system's units and SI units:

  • 1 unit of mass = 10 kg
  • 1 unit of length = 5 m
  • 1 unit of time = 2 s

To find the value of 1 unit of force in the new system, we substitute these equivalences into the dimensional formula for force:

1 unit of force=(1 unit of mass)×(1 unit of length)×(1 unit of time)21 \text{ unit of force} = (1 \text{ unit of mass}) \times (1 \text{ unit of length}) \times (1 \text{ unit of time})^{-2}

Substitute the given values in SI units:

1 unit of force=(10 kg)×(5 m)×(2 s)21 \text{ unit of force} = (10 \text{ kg}) \times (5 \text{ m}) \times (2 \text{ s})^{-2}

1 unit of force=(10 kg)×(5 m)×1(2 s)21 \text{ unit of force} = (10 \text{ kg}) \times (5 \text{ m}) \times \frac{1}{(2 \text{ s})^2}

1 unit of force=(10 kg)×(5 m)×14 s21 \text{ unit of force} = (10 \text{ kg}) \times (5 \text{ m}) \times \frac{1}{4 \text{ s}^2}

1 unit of force=10×54 kgm/s21 \text{ unit of force} = \frac{10 \times 5}{4} \text{ kg} \cdot \text{m/s}^2

1 unit of force=504 kgm/s21 \text{ unit of force} = \frac{50}{4} \text{ kg} \cdot \text{m/s}^2

1 unit of force=12.5 kgm/s21 \text{ unit of force} = 12.5 \text{ kg} \cdot \text{m/s}^2

Since 1 kgm/s2=1 Newton (N)1 \text{ kg} \cdot \text{m/s}^2 = 1 \text{ Newton (N)}, we have:

1 unit of force=12.5 N1 \text{ unit of force} = 12.5 \text{ N}

The method involving n2=n1[M1/M2]a[L1/L2]b[T1/T2]cn_2 = n_1 [M_1/M_2]^a [L_1/L_2]^b [T_1/T_2]^c leads to the same result. Here, we want to find N1N_1 (value in SI units) for N2=1N_2 = 1 (1 unit of force in the new system). N1=N2[M2M1]a[L2L1]b[T2T1]cN_1 = N_2 \left[ \frac{M_2}{M_1} \right]^a \left[ \frac{L_2}{L_1} \right]^b \left[ \frac{T_2}{T_1} \right]^c For force, a=1, b=1, c=-2. N1=1×[10 kg1 kg]1×[5 m1 m]1×[2 s1 s]2N_1 = 1 \times \left[ \frac{10 \text{ kg}}{1 \text{ kg}} \right]^1 \times \left[ \frac{5 \text{ m}}{1 \text{ m}} \right]^1 \times \left[ \frac{2 \text{ s}}{1 \text{ s}} \right]^{-2} N1=1×10×5×(2)2N_1 = 1 \times 10 \times 5 \times (2)^{-2} N1=10×5×14N_1 = 10 \times 5 \times \frac{1}{4} N1=504=12.5N_1 = \frac{50}{4} = 12.5

Thus, 1 unit of force in the hypothetical system is 12.5 Newtons.