Solveeit Logo

Question

Physics Question on Wave optics

In a hall, a person receives direct sound waves from a source 120m120 \,m away. He also receives waves from the same source which reach him after being reflected from the 25m25\, m high ceiling at a point half-way between them. The two waves interfere constructively for wavelengths (in metre) of

A

10,5,5210,5,\frac{5}{2}

B

20,203,205.....20,\frac{20}{3},\frac{20}{5}.....

C

30,20,10.....30,20,10.....

D

35,25,15.....35,25,15.....

Answer

20,203,205.....20,\frac{20}{3},\frac{20}{5}.....

Explanation

Solution

Path difference Δx(SA+AP)SP\Delta x(S A+A P)-S P
Δx=(65+65)120\Rightarrow \Delta x=(65+65)-120
Δx=10m\Rightarrow \Delta x=10 \,m
But at A the wave suffers reflection at the surface of rigid/fixed end or denser medium hence the wave must suffer an additional path change of λ2\frac{\lambda}{2} on a phase change of π\pi.

\Rightarrow Net path difference
=(10λ2)=\left(10-\frac{\lambda}{2}\right)
For maxima (constrictive interference) Net path difference
=(2n)λ2,n=0,1,2,3=(2 n) \frac{\lambda}{2}, n=0,1,2,3 \ldots
10λ2=(2n)λ2;n=0,1,2,10-\frac{\lambda}{2}=(2 n) \frac{\lambda}{2} ; n=0,1,2, \ldots
10=(2n+1)λ2;n=0,1,2,.\Rightarrow 10=(2 n+1) \frac{\lambda}{2} ; n=0,1,2, \ldots .
λ=202n+1;n=0,1,2,\Rightarrow \lambda=\frac{20}{2 n+1} ; n=0,1,2, \ldots
λ=20,203,205,207\Rightarrow \lambda=20, \frac{20}{3}, \frac{20}{5}, \frac{20}{7} \ldots