Solveeit Logo

Question

Mathematics Question on Sequence and series

In a geometric progression consisting of positive terms, each term equals the sum of the next two terms. Then the common ratio of this progression equals

A

12(15)\frac{1}{2}\left(1-\sqrt{5}\right)

B

125\frac{1}{2}\sqrt{5}

C

5\sqrt{5}

D

12(51)\frac{1}{2}\left(\sqrt{5}-1\right)

Answer

12(51)\frac{1}{2}\left(\sqrt{5}-1\right)

Explanation

Solution

Given arn1=arn+arn+1ar^{n-1} = ar^{n} + ar^{n+1} 1=r+r2\Rightarrow 1=r+r^{2} r=512.\therefore r=\frac{\sqrt{5}-1}{2}.