Solveeit Logo

Question

Question: In a Geiger-Marsden experiment. Find the distance of closest approach to the nucleus of a 7.7 MeV \(...

In a Geiger-Marsden experiment. Find the distance of closest approach to the nucleus of a 7.7 MeV α\alpha -before it comes momentarily to rest and reverses its direction. (Z for gold nucleus = 79)

A

10 fm

B

20 fm

C

30 fm

D

40 fm

Answer

30 fm

Explanation

Solution

Led d be the distance of closest approach then by the conservation of energy

Initial kinetic energy of incoming α\alphaparticle, k = Final electric potential energy U of the system

As K=14πε0(2e)(Ze)dK = \frac{1}{4\pi\varepsilon_{0}}\frac{(2e)(Ze)}{d}

d=14πε02Ze2K\therefore d = \frac{1}{4\pi\varepsilon_{0}}\frac{2Ze^{2}}{K} ….. (i)

Here ,

14πε0=9×109Nm2C2,Z=79,e=1.6×1019C\frac{1}{4\pi\varepsilon_{0}} = 9 \times 10^{9}Nm^{2}C^{- 2},Z = 79,e = 1.6 \times 10^{- 19}C

K=7.7MeV=7.7×106×1.6×1019J=1.2×1012JK = 7.7MeV = 7.7 \times 10^{6} \times 1.6 \times 10^{- 19}J = 1.2 \times 10^{- 12}Jsubstituting these values in (i)

d=2×9×109×(1.6×1019)2×791.2×1012d = \frac{2 \times 9 \times 10^{9} \times (1.6 \times 10^{- 19})^{2} \times 79}{1.2 \times 10^{- 12}}

d=3×1014md = 3 \times 10^{- 14}m

=30m= 30m (1fm=1015m)(\because 1fm = 10^{- 15}m)