Solveeit Logo

Question

Physics Question on Atoms

In a Geiger-Marsden experiment. Find the distance of closest approach to the nucleus of a 7.7MeV7.7 \,MeV α\alpha-particle before it comes momentarily to rest and reverses its direction. (ZZ for gold nucleus =79= 79)

A

10fm10\,fm

B

20fm20\,fm

C

30fm30\,fm

D

40fm40\,fm

Answer

30fm30\,fm

Explanation

Solution

Let dd be the distance of closest approach then by the conservation of energy. Initial kinetic energy of incoming α\alpha-particle KK == Final electric potential energy UU of the system As K=14πε0×(2e)(Ze)dK = \frac{1}{4\pi\varepsilon_{0}}\times\frac{\left(2e\right)\left(Ze\right)}{d} d=14πε02Ze2K...(i)\therefore d = \frac{1}{4\pi\varepsilon_{0}} \frac{2Ze^{2}}{K} ...\left(i\right) Here, 14πε0=9×109Nm2C2\frac{1}{4\pi\varepsilon_{0}} = 9 \times10^{9} N m^{2} C^{-2} Z=79,e=1.6×1019C Z = 79, e = 1.6 \times 10^{-19} C. K=7.7MeVK = 7.7 MeV =7.7×106×1.6×109J= 7.7 \times 10^{6}\times 1.6\times 10^{-9} J =1.2×1012J= 1.2 \times 10^{-12}J Substituting these values in (i)\left(i\right) d=2×9×109×(1.6×1019)2×791.2×1012 d = \frac{2\times 9 \times 10^{9} \times \left(1.6 \times 10^{-19}\right)^{2}\times 79}{1.2\times10^{-12}} d=3×1014md = 3 \times 10^{-14} m m=30fm(1fm=1015m) m = 30\, fm \left(\because 1\, fm = 10^{-15} \,m\right)