Solveeit Logo

Question

Question: In a fuel cell, methanol is used as a fuel and oxygen gas is used as an oxidizer. At 298 K, the Gibb...

In a fuel cell, methanol is used as a fuel and oxygen gas is used as an oxidizer. At 298 K, the Gibb's free energy of formation for CH3OH(l)CH_3OH(l), H2O(l)H_2O(l) and CO2(g)CO_2(g) are -168, -237, -394 kJ mol1mol^{-1} respectively. If the efficiency of the fuel cell is 80%, the enthalpy of combustion of methanol is -x kJ/mol. The value of x is _____.

Answer

875

Explanation

Solution

The combustion reaction of methanol is: CH3OH(l)+32O2(g)CO2(g)+2H2O(l)CH_3OH(l) + \frac{3}{2}O_2(g) \longrightarrow CO_2(g) + 2H_2O(l)

1. Calculate the standard Gibbs free energy change (ΔG\Delta G^\circ) for the reaction:

The standard Gibbs free energy of reaction is calculated using the standard Gibbs free energies of formation (ΔGf\Delta G^\circ_f) of products and reactants:

ΔGreaction=(products)(reactants)\Delta G^\circ_{reaction} = \sum (\text{products}) - \sum (\text{reactants})

ΔGreaction=[1×ΔGf(CO2(g))+2×ΔGf(H2O(l))][1×ΔGf(CH3OH(l))+32×ΔGf(O2(g))]\Delta G^\circ_{reaction} = [1 \times \Delta G^\circ_f(CO_2(g)) + 2 \times \Delta G^\circ_f(H_2O(l))] - [1 \times \Delta G^\circ_f(CH_3OH(l)) + \frac{3}{2} \times \Delta G^\circ_f(O_2(g))]

Given values:

ΔGf(CH3OH(l))=168 kJ mol1\Delta G^\circ_f(CH_3OH(l)) = -168 \text{ kJ } mol^{-1} ΔGf(H2O(l))=237 kJ mol1\Delta G^\circ_f(H_2O(l)) = -237 \text{ kJ } mol^{-1} ΔGf(CO2(g))=394 kJ mol1\Delta G^\circ_f(CO_2(g)) = -394 \text{ kJ } mol^{-1} ΔGf(O2(g))=0 kJ mol1\Delta G^\circ_f(O_2(g)) = 0 \text{ kJ } mol^{-1} (element in its standard state)

Substitute the values into the equation:

ΔGreaction=[1×(394 kJ mol1)+2×(237 kJ mol1)][1×(168 kJ mol1)+32×0 kJ mol1]\Delta G^\circ_{reaction} = [1 \times (-394 \text{ kJ } mol^{-1}) + 2 \times (-237 \text{ kJ } mol^{-1})] - [1 \times (-168 \text{ kJ } mol^{-1}) + \frac{3}{2} \times 0 \text{ kJ } mol^{-1}]

ΔGreaction=[394474][168]\Delta G^\circ_{reaction} = [-394 - 474] - [-168]

ΔGreaction=868(168)\Delta G^\circ_{reaction} = -868 - (-168)

ΔGreaction=868+168\Delta G^\circ_{reaction} = -868 + 168

ΔGreaction=700 kJ mol1\Delta G^\circ_{reaction} = -700 \text{ kJ } mol^{-1}

2. Use the efficiency formula for a fuel cell:

The efficiency (η\eta) of a fuel cell is given by the ratio of the maximum useful work (Gibbs free energy change) to the total energy released (enthalpy change):

η=ΔGΔH\eta = \frac{\Delta G^\circ}{\Delta H^\circ} (Here, both ΔG\Delta G^\circ and ΔH\Delta H^\circ are negative, so their ratio is positive, representing efficiency).

Given efficiency η=80%=0.80\eta = 80\% = 0.80.

3. Calculate the enthalpy of combustion (ΔH\Delta H^\circ):

We have ΔG=700 kJ mol1\Delta G^\circ = -700 \text{ kJ } mol^{-1} and η=0.80\eta = 0.80.

Rearrange the efficiency formula to solve for ΔH\Delta H^\circ:

ΔH=ΔGη\Delta H^\circ = \frac{\Delta G^\circ}{\eta}

ΔH=700 kJ mol10.80\Delta H^\circ = \frac{-700 \text{ kJ } mol^{-1}}{0.80}

ΔH=875 kJ mol1\Delta H^\circ = -875 \text{ kJ } mol^{-1}

4. Determine the value of x:

The enthalpy of combustion of methanol is given as -x kJ/mol.

So, ΔH=x kJ mol1\Delta H^\circ = -x \text{ kJ } mol^{-1}.

Comparing this with our calculated value:

x=875-x = -875

x=875x = 875