Solveeit Logo

Question

Question: In a Fraunhofer diffraction experiment at a single slit using a light of wavelength 400nm, the first...

In a Fraunhofer diffraction experiment at a single slit using a light of wavelength 400nm, the first minimum is formed at an angle of 30{30^ \circ }. The direction θ\theta of the first secondary maximum is given by:
a. sin1(23){\sin ^{ - 1}}\left( {\dfrac{2}{3}} \right)
b. sin1(34){\sin ^{ - 1}}\left( {\dfrac{3}{4}} \right)
c. sin1(14){\sin ^{ - 1}}\left( {\dfrac{1}{4}} \right)
d. tan1(23)ta{n^{ - 1}}\left( {\dfrac{2}{3}} \right)

Explanation

Solution

From the path difference relation for minima try to find the slit width. Use that to find the direction for secondary maximum.

Formula Used:
For minima of a diffraction:
asinθmin=nλa\sin {\theta _{\min }} = n\lambda -----(1)
Where,
a is width of the slit,
n is order of the minima,
θmin{\theta _{\min }} is angle for nth{n^{th}} minima formation,
λ\lambda is the wavelength of the light.

For maxima of a diffraction:
asinθmax=(n+12)λa\sin {\theta _{\max }} = \left( {n + \dfrac{1}{2}} \right)\lambda ------(2)
θmax{\theta _{\max }} is angle for nth{n^{th}}maxima formation.

Complete answer:
Given:
Wavelength of the light used, λ=400nm\lambda = 400nm.
For n=1 i.e. for first minima θmin=30{\theta _{\min }} = {30^ \circ }.

To find: direction angle for first secondary maxima.

Step 1
Substitute the value of n, λ\lambda and θmin{\theta _{\min }}in eq(1) to get a:
asin(30)=1×400 a×12=400 a=400×2=800nm  asin\left( {{{30}^ \circ }} \right) = 1 \times 400 \\\ \Rightarrow a \times \dfrac{1}{2} = 400 \\\ \Rightarrow a = 400 \times 2 = 800nm \\\

Step 2
For first secondary maxima, n=1n = 1.
Now, use the value of a in eq(2) to get θmax{\theta _{\max }}:
800×sinθmax=(1+12)×400 sinθmax=32×400800 θmax=sin1(34)  800 \times sin{\theta _{\max }} = \left( {1 + \dfrac{1}{2}} \right) \times 400 \\\ \Rightarrow sin{\theta _{\max }} = \dfrac{3}{2} \times \dfrac{{400}}{{800}} \\\ \Rightarrow {\theta _{\max }} = {\sin ^{ - 1}}\left( {\dfrac{3}{4}} \right) \\\

Hence, the direction θ\theta of the first secondary maximum is given by sin1(34){\sin ^{ - 1}}\left( {\dfrac{3}{4}} \right).

Note: This problem can be solved without using the value of λ\lambda and without finding the value of a. Just take the ratio of eq(1) and eq(2) after inserting proper values of n and θmin{\theta _{\min }}. You’ll see:
asinθmaxasin(30)=(1+12)λ1×λ sinθmax=32×12 θmax=sin1(34)  \dfrac{{a\sin {\theta _{\max }}}}{{a\sin ({{30}^ \circ })}} = \dfrac{{\left( {1 + \dfrac{1}{2}} \right)\lambda }}{{1 \times \lambda }} \\\ \Rightarrow \sin {\theta _{\max }} = \dfrac{3}{2} \times \dfrac{1}{2} \\\ \Rightarrow {\theta _{\max }} = {\sin ^{ - 1}}\left( {\dfrac{3}{4}} \right) \\\
And this is the same answer you got previously but this time with a lot less amount of calculations.

Also, many students get confused with the term ‘first secondary maxima’. Always remember that the first secondary maxima is the first maxima beside the central one, not the central one itself. So, for this maxima the value of n will be 1 not 0.