Solveeit Logo

Question

Physics Question on Wave optics

In a Fraunhofer diffraction at single slit of width d with incident light of wavelength 5500 A˚\mathring {A}, the first minimum is observed, at angle 30^{\circ}. The first secondary maximum is observed at an angle θ\theta

A

sin1(12)\sin^{-1} \big(\frac{1}{\sqrt2}\big)

B

sin1(14)\sin^{-1} \big(\frac{1}{4}\big)

C

sin1(34)\sin^{-1} \big(\frac{3}{4}\big)

D

sin132\sin^{-1} \frac{\sqrt3}{2}

Answer

sin1(34)\sin^{-1} \big(\frac{3}{4}\big)

Explanation

Solution

Condition for nnth secondary minimum is that path difference
=asinθn=nλ= a \sin \, \theta_n = n \lambda
nth secondary maximum is part difference
=asinθn=(2n+1)λ2= a \sin \, \theta_n = (2n + 1) \frac{\lambda}{2}
For 1st minimum, λ=5500A˚,θn=30\lambda = 5500 \mathring {A}, \theta_n = 30^\circ
asin30=λ...(i)a \sin \, 30^\circ = \lambda ... (i)
For 2nd maximum path difference
=asinθn=(2n+1)λ2...(ii)= a \sin \, \theta_n = (2n + 1)\frac{\lambda}{2} ...(ii)
Dividing E (i) by E (ii), we get
12sinθn=23.\frac{\frac{1}{2}}{\sin \, \theta_n} = \frac{2}{3}.
sinθn=34\Rightarrow \sin \, \theta_n = \frac{3}{4}
θn=sin1(34)\Rightarrow \, \theta_n = \sin^{-1} \big(\frac{3}{4}\big)