Solveeit Logo

Question

Chemistry Question on Some basic concepts of chemistry

In a flask, the weight ratio of CH4(g)CH _{4}( g ) and SO2(g)SO _{2}(g) at 298K298 \,K and 1 bar is 1:21: 2. The ratio of the number of molecules of SO2(g)SO _{2}(g) and CH4(g)CH _{4}(g) is

A

1:41 : 4

B

4:14 : 1

C

1:21 : 2

D

2:12 : 1

Answer

1:21 : 2

Explanation

Solution

Given, weight ratio : WCH4:WsO2=1:2W_{ CH _{4}}: W_{ sO _{2}}=1: 2
n=Wm\because n=\frac{W}{m}
n=n= no. of moles
w=w= mass
M=M= molar mass
n1n2=W1M1×M2W2{n1=nso2 n2=ncH4\therefore \frac{n_{1}}{n_{2}}=\frac{W_{1}}{M_{1}} \times \frac{M_{2}}{W_{2}}\begin{cases}n_{1}=n_{ so _{2}} \\\ n_{2}=n_{ cH _{4}}\end{cases}
n1n2=WsO2MsO2×MCH4WCH4\frac{n_{1}}{n_{2}}=\frac{W_{ sO _{2}}}{M_{ sO _{2}}} \times \frac{M_{ CH _{4}}}{W_{ CH _{4}}}
=264×161=\frac{2}{64} \times \frac{16}{1}
n1n2=12\frac{n_{1}}{n_{2}}=\frac{1}{2}, i.e. 1:21: 2
Also nNn \propto N
\therefore Ratio of number of molecules is 1:21: 2.