Solveeit Logo

Question

Mathematics Question on Trigonometric Identities

In a ΔPQR, if 3sinP + 4cosQ = 6 and 4sinQ + 3cosP = 1, then the angle R is equal to:

A

5π6\frac{5π}{6}

B

π6\frac{π}{6}

C

π4\frac{π}{4}

D

3π4\frac{3π}{4}

Answer

π6\frac{π}{6}

Explanation

Solution

Given aPQR such that\text{Given a}\,\triangle \text{PQR such that}

3sinP + 4cosQ = 6 ….(i)
4sinQ + 3cosP = 1 .…(ii)

On squaring and adding the Eqs. (i) and (ii), we get

(3sinP+4cosQ)2+(4sinQ+3cosP)2=36+1(3sinP + 4cosQ)^2 + (4sinQ + 3cosP)^2\, =36+1
9(sin2P+cos2P)+16(sin2Q+cos2Q)+2×3×4(sinPcosQ+sinQcosP)=379(sin^2P + cos^2P) + 16(sin^2Q + cos^2Q) + 2\times3 \times4 (sinP cosQ + sinQcosP) = 37
24[sin(P+Q)]=372524[sin(P+Q)] = 37-25
sin(P+Q)=12sin(P+Q) = \frac{1}{2}

Since, P and Q are angles of PQR\triangle PQR, hence 0^\degree<P,\, Q<180^\degree
P+Q = 30^\degree\,\, or \,\,150^\degree
R = 150^\degree \,\, or \,\, 30^\degree

Hence, Two cases aries here,
**Case I **R = 150^\degree
P+Q = 30^\degree
0< P,\, Q<30^\degree
sinP<12,cosQ<1sinP<\frac{1}{2}, cosQ<1
3sinP+4cosQ<32+43sinP + 4cosQ <\frac{3}{2} + 4
3sinP+4cosQ<112<63sinP + 4cosQ <\frac{11}{2} < 6
3sinP+4cosQ6is not possible.3sinP + 4cosQ ⇒6\,\, \text{is not possible.}

**Case II **R = 30^\degree
\text{Hence, R} = 30^\degree \text{is the only possibility. }

So, The correct option is (B) π6\frac{π}{6}.