Question
Mathematics Question on Trigonometric Identities
In a ΔPQR, if 3sinP + 4cosQ = 6 and 4sinQ + 3cosP = 1, then the angle R is equal to:
65π
6π
4π
43π
6π
Solution
Given a△PQR such that
3sinP + 4cosQ = 6 ….(i)
4sinQ + 3cosP = 1 .…(ii)
On squaring and adding the Eqs. (i) and (ii), we get
(3sinP+4cosQ)2+(4sinQ+3cosP)2=36+1
⇒ 9(sin2P+cos2P)+16(sin2Q+cos2Q)+2×3×4(sinPcosQ+sinQcosP)=37
⇒ 24[sin(P+Q)]=37−25
⇒ sin(P+Q)=21
Since, P and Q are angles of △PQR, hence 0^\degree<P,\, Q<180^\degree
⇒ P+Q = 30^\degree\,\, or \,\,150^\degree
⇒ R = 150^\degree \,\, or \,\, 30^\degree
Hence, Two cases aries here,
**Case I **R = 150^\degree
⇒P+Q = 30^\degree
⇒ 0< P,\, Q<30^\degree
⇒ sinP<21,cosQ<1
⇒ 3sinP+4cosQ<23+4
⇒ 3sinP+4cosQ<211<6
⇒ 3sinP+4cosQ⇒6is not possible.
**Case II **R = 30^\degree
\text{Hence, R} = 30^\degree \text{is the only possibility. }
So, The correct option is (B) 6π.