Solveeit Logo

Question

Physics Question on Wave optics

In a double slit experiment shown in figure, when light of wavelength 400 nm is used, dark fringe is observed at P. If D = 0.2 m. the minimum distance between the slits S1 and S2 is ______ mm.
Triangle

Answer

Step1. Path Difference Condition for Minima: - For a dark fringe (minima) at P , the path difference should be:

2D2+d22D=λ22\sqrt{D^2 + d^2} - 2D = \frac{\lambda}{2}

- Rearrange:

D2+d2D=λ4\sqrt{D^2 + d^2} - D = \frac{\lambda}{4}

- Therefore:

D2+d2=D+λ4\sqrt{D^2 + d^2} = D + \frac{\lambda}{4}

Step 2. Square Both Sides:

D2+d2=D2+Dλ+λ216D^2 + d^2 = D^2 + D\lambda + \frac{\lambda^2}{16}

- Simplify to solve for d :

d2=Dλ+λ216d^2 = D\lambda + \frac{\lambda^2}{16}

Step 3. Substitute Given Values: - λ=400nm=400×109m\lambda = 400 \, \text{nm} = 400 \times 10^{-9} \, \text{m}, D=0.2mD = 0.2 \, \text{m}

d2=0.2×400×109+(400×109)216d^2 = 0.2 \times 400 \times 10^{-9} + \frac{(400 \times 10^{-9})^2}{16}

- Calculate:

d24×108m2d^2 \approx 4 \times 10^{-8} \, \text{m}^2

d2×104m=0.20mmd \approx 2 \times 10^{-4} \, \text{m} = 0.20 \, \text{mm}

So, the correct answer is: d=0.20mmd = 0.20 \, \text{mm}