Solveeit Logo

Question

Physics Question on Wave optics

In a diffraction pattern due to a single slit of width 'a', the first minimum is observed at an angle 3030^{\circ} when light of wavelength 5000A˚5000 \mathring A is incident on the slit. The first secondary maximum is observed at an angle of :

A

sin1(23)\sin^{-1} \left( \frac{2}{3} \right)

B

sin1(12)\sin^{-1} \left( \frac{1}{2} \right)

C

sin1(34)\sin^{-1} \left( \frac{3}{4} \right)

D

sin1(14)\sin^{-1} \left( \frac{1}{4} \right)

Answer

sin1(34)\sin^{-1} \left( \frac{3}{4} \right)

Explanation

Solution

For first minima , sin30=λa=12\sin 30^{\circ} = \frac{\lambda}{a} = \frac{1}{2}
First secondary maxima will be at
sinθ=3λ2a=32(12)θ=sin1(34)\sin \theta = \frac{3 \lambda}{2a} = \frac{3}{2} \left( \frac{1}{2} \right) \, \Rightarrow \, \theta = \sin^{-1} \left( \frac{3}{4} \right)