Solveeit Logo

Question

Question: In a \(\Delta ABC,A = \frac{2\pi}{3},b - c = 3\sqrt{3}\) and ar\(R = \frac{5}{2} = 2.5\text{ unit}\)...

In a ΔABC,A=2π3,bc=33\Delta ABC,A = \frac{2\pi}{3},b - c = 3\sqrt{3} and arR=52=2.5 unitR = \frac{5}{2} = 2.5\text{ unit} Then a is

A

63cm.6\sqrt{3}cm.

B

9cm.9cm.

C

18 cm.

D

None of these

Answer

9cm.9cm.

Explanation

Solution

12bcsin2π3=932\frac{1}{2}bc\sin\frac{2\pi}{3} = \frac{9\sqrt{3}}{2} or 12.32\frac{1}{2}.\frac{\sqrt{3}}{2}.bc =932\frac{9\sqrt{3}}{2}bc =18

Also, cos2π3=b2+c2a22bc\cos\frac{2\pi}{3} = \frac{b^{2} + c^{2} - a^{2}}{2bc}12=(bc)2+2bca22bc- \frac{1}{2} = \frac{(b - c)^{2} + 2bc - a^{2}}{2bc} or

(bc)2+3bca2=0(b - c)^{2} + 3bc - a^{2} = 0 or 27+54=a227 + 54 = a^{2}a=9a = 9.