Solveeit Logo

Question

Mathematics Question on Trigonometric Identities

In a ΔABC\Delta ABC. with usual notation, match the items in List - I with the items in List - II and choose the correct option.List IList II
(A)r1r2(4Rr1r2r1+r2)r_1r_2\sqrt{\bigg(\frac{4R-r_1-r_2}{r_1+r_2}\bigg)}
(B)r2(r3+r1)r1r2+r2r3+r3r1\frac{r_2(r_3+r_1)}{\sqrt{r_1r_2+r_2r_3+r_3r_1}}
(C)ac=sin(AB)sin(BC)\frac{a}{c}=\frac{sin(A-B)}{sin(B-C)}
(D)bc  cos2A2bc\;cos^2\frac{A}{2}
5
A

(A)-(4), (B)-(3), (C)-(1), (D)-(5)

B

(A)-(5), (B)-(4), (C)-(3), (D)-(2)

C

(A)-(3) , (B)-(1), (C)-(2) , (D)-(5)

D

(A)-(4) , (B)-(5), (C)-(2) , (D)-(1)

Answer

(A)-(3) , (B)-(1), (C)-(2) , (D)-(5)

Explanation

Solution

(A) r1r24Rr1r2r1+r2=[Δ2(sa)(sb)r_{1} r_{2} \sqrt{\frac{4 R-r_{1}-r_{2}}{r_{1}+r_{2}}}=\left[\frac{\Delta^{2}}{(s-a)(s-b)}\right. 4R4RcosC2(sinA2cosB2+sinB2cosA2)4RcosC2(sinA2cosB2+sinB2cosA2)]\left.\sqrt{\frac{4 R-4 R \cos \frac{C}{2}\left(\sin \frac{A}{2} \cos \frac{B}{2}+\sin \frac{B}{2} \cos \frac{A}{2}\right)}{4 R \cos \frac{C}{2}\left(\sin \frac{A}{2} \cos \frac{B}{2}+\sin \frac{B}{2} \cos \frac{A}{2}\right)}}\right]

=Δ2(sa)(sb)4R(1cos2C2)4Rcos2C2=\frac{\Delta^{2}}{(s-a)(s-b)} \sqrt{\frac{4 R\left(1-\cos ^{2} \frac{C}{2}\right)}{4 R \cos ^{2} \frac{C}{2}}}

=Δ2(sa)(sb)tanC2=\frac{\Delta^{2}}{(s-a)(s-b)} \tan \frac{C}{2}

=Δ2(sa)(sb)(sa)(sb)s(sc)=\frac{\Delta^{2}}{(s-a)(s-b)} \sqrt{\frac{(s-a)(s-b)}{s(s-c)}}

=Δ2Δ=Δ=\frac{\Delta^{2}}{\Delta}=\Delta


(B) r2(r3+r1)r1r2+r2r3+r3r1\frac{r_{2}\left(r_{3}+r_{1}\right)}{\sqrt{r_{1} r_{2}+r_{2} r_{3}+r_{3} r_{1}}}

=Δsb(Δsc+Δsa)(sa)+(sb)+(sc)(sa)(sb)(sc)=\frac{\frac{\Delta}{s-b}\left(\frac{\Delta}{s-c}+\frac{\Delta}{s-a}\right)}{\sqrt{\frac{(s-a)+(s-b)+(s-c)}{(s-a)(s-b)(s-c)}}}

=Δ(sb)×2Sac(sa)(sc)3Sabc(sa)(sb)(sc)=Δ(b)s(sa)(sb)(sc)=b=\frac{\frac{\Delta}{(s-b)} \times \frac{2 S-a-c}{(s-a)(s-c)}}{\sqrt{\frac{3 S-a-b-c}{(s-a)(s-b)(s-c)}}}=\frac{\Delta(b)}{\sqrt{s(s-a)(s-b)(s-c)}}=b


(C) ac=sin(AB)sin(BC)\frac{a}{c}=\frac{\sin (A-B)}{\sin (B-C)}

sinAsinC=sin(AB)sin(BC)\Rightarrow \frac{\sin A}{\sin C}=\frac{\sin (A-B)}{\sin (B-C)}
sinAsin(BC)=sin(AB)sinC\Rightarrow \sin A \sin (B-C)=\sin (A-B) \sin C
sinA(sinBcosCsinCcosB)\Rightarrow \sin A(\sin B \cos C-\sin C \cos B) =(sinAcosBcosAsinB)sinC=(\sin A \cos B-\cos A \sin B) \sin C
2sinAcosBsinC=sinAsinBcosC\Rightarrow 2 \sin A \cos B \sin C=\sin A \sin B \cos C +sinBcosAsinC+\sin B \cos A \sin C

2a2R×a2+c2b22ac×c2R\Rightarrow 2 \frac{a}{2 R} \times \frac{a^{2}+c^{2}-b^{2}}{2 a c} \times \frac{c}{2 R} =(a2R×b2R×a2+b2c22ab)+=\left(\frac{a}{2 R} \times \frac{b}{2 R} \times \frac{a^{2}+b^{2}-c^{2}}{2 a b}\right)+ (b2R×b2+c2a22bc×c2R)\left(\frac{b}{2 R} \times \frac{b^{2}+c^{2}-a^{2}}{2 b c} \times \frac{c}{2 R}\right)

2(a2+c2b2)=a2+b2c2+b2+c2a2\Rightarrow 2\left(a^{2}+c^{2}-b^{2}\right)=a^{2}+b^{2}-c^{2}+b^{2}+c^{2}-a^{2}
2a2+2c22b2=2b2\Rightarrow 2 a^{2}+2 c^{2}-2 b^{2}=2 b^{2}
2b2=a2+c2\Rightarrow 2 b^{2}=a^{2}+c^{2}
a2,b2,c2\Rightarrow a^{2}, b^{2}, c^{2} are in AP.


(D) bccos2A2=bc×s(sa)bc=s(sa)b c \cos ^{2} \frac{A}{2}=b c \times \frac{s(s-a)}{b c}=s(s-a)

Therefore, the correct option is (C) : (A)-(3) , (B)-(1), (C)-(2) , (D)-(5)