Question
Mathematics Question on Trigonometric Identities
In a ΔABC. with usual notation, match the items in List - I with the items in List - II and choose the correct option.List I | List II |
---|---|
(A) | r1r2(r1+r24R−r1−r2) |
(B) | r1r2+r2r3+r3r1r2(r3+r1) |
(C) | ca=sin(B−C)sin(A−B) |
(D) | bccos22A |
5 |
(A)-(4), (B)-(3), (C)-(1), (D)-(5)
(A)-(5), (B)-(4), (C)-(3), (D)-(2)
(A)-(3) , (B)-(1), (C)-(2) , (D)-(5)
(A)-(4) , (B)-(5), (C)-(2) , (D)-(1)
(A)-(3) , (B)-(1), (C)-(2) , (D)-(5)
Solution
(A) r1r2r1+r24R−r1−r2=[(s−a)(s−b)Δ2 4Rcos2C(sin2Acos2B+sin2Bcos2A)4R−4Rcos2C(sin2Acos2B+sin2Bcos2A)]
=(s−a)(s−b)Δ24Rcos22C4R(1−cos22C)
=(s−a)(s−b)Δ2tan2C
=(s−a)(s−b)Δ2s(s−c)(s−a)(s−b)
=ΔΔ2=Δ
(B) r1r2+r2r3+r3r1r2(r3+r1)
=(s−a)(s−b)(s−c)(s−a)+(s−b)+(s−c)s−bΔ(s−cΔ+s−aΔ)
=(s−a)(s−b)(s−c)3S−a−b−c(s−b)Δ×(s−a)(s−c)2S−a−c=s(s−a)(s−b)(s−c)Δ(b)=b
(C) ca=sin(B−C)sin(A−B)
⇒sinCsinA=sin(B−C)sin(A−B)
⇒sinAsin(B−C)=sin(A−B)sinC
⇒sinA(sinBcosC−sinCcosB) =(sinAcosB−cosAsinB)sinC
⇒2sinAcosBsinC=sinAsinBcosC +sinBcosAsinC
⇒22Ra×2aca2+c2−b2×2Rc =(2Ra×2Rb×2aba2+b2−c2)+ (2Rb×2bcb2+c2−a2×2Rc)
⇒2(a2+c2−b2)=a2+b2−c2+b2+c2−a2
⇒2a2+2c2−2b2=2b2
⇒2b2=a2+c2
⇒a2,b2,c2 are in AP.
(D) bccos22A=bc×bcs(s−a)=s(s−a)
Therefore, the correct option is (C) : (A)-(3) , (B)-(1), (C)-(2) , (D)-(5)