Solveeit Logo

Question

Question: In a \[\Delta ABC\], the value of \[\dfrac{{a\cos A + b\cos B + c\cos C}}{{a + b + c}}\] is equal to...

In a ΔABC\Delta ABC, the value of acosA+bcosB+ccosCa+b+c\dfrac{{a\cos A + b\cos B + c\cos C}}{{a + b + c}} is equal to
A.rR\dfrac{r}{R}
B.R2r\dfrac{R}{{2r}}
C.Rr\dfrac{R}{r}
D.2rR\dfrac{{2r}}{R}

Explanation

Solution

Here we will firstly use the sine rule to find the value of a,ba,b and cc in terms of the R. Then we will put the value of a,b,ca,b,c in the given equation. Then we will simplify the equation using the trigonometric properties. Then we will use the basic conditions of the triangle to get the value of the given expression.

Complete step-by-step answer:
Here we will firstly use the sine rule to find the value of a,ba,b and cc in terms of the R. Then we will put the value of a,b,ca,b,c in the given equation. Then we will simplify the equation using the trigonometric properties. Then we will use the basic conditions of the triangle to get the value of the given expression.

First, we will use the sine rule to get the value of the a,b,ca,b,c in term of the R.
We know that according to the sine rule
asinA=bsinB=csinC=2R\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = 2R
On cross multiplication, we get
a=2RsinA,b=2RsinB,c=2RsinCa = 2R\sin A,b = 2R\sin B,c = 2R\sin C
Now we will put the value of a,b,ca,b,c in the given equation acosA+bcosB+ccosCa+b+c\dfrac{{a\cos A + b\cos B + c\cos C}}{{a + b + c}}. Therefore, we get
acosA+bcosB+ccosCa+b+c=2RsinAcosA+2RsinBcosB+2RsinCcosC2RsinA+2RsinB+2RsinC\dfrac{{a\cos A + b\cos B + c\cos C}}{{a + b + c}} = \dfrac{{2R\sin A\cos A + 2R\sin B\cos B + 2R\sin C\cos C}}{{2R\sin A + 2R\sin B + 2R\sin C}}
We know the trigonometric property that sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta . Therefore, by using this we get
acosA+bcosB+ccosCa+b+c=Rsin2A+Rsin2B+Rsin2C2RsinA+2RsinB+2RsinC\Rightarrow \dfrac{{a\cos A + b\cos B + c\cos C}}{{a + b + c}} = \dfrac{{R\sin 2A + R\sin 2B + R\sin 2C}}{{2R\sin A + 2R\sin B + 2R\sin C}}
We can write the above equation as
acosA+bcosB+ccosCa+b+c=R(sin2A+sin2B+sin2C)2R(sinA+sinB+sinC)\Rightarrow \dfrac{{a\cos A + b\cos B + c\cos C}}{{a + b + c}} = \dfrac{{R\left( {\sin 2A + \sin 2B + \sin 2C} \right)}}{{2R\left( {\sin A + \sin B + \sin C} \right)}}
We know that the sum of all the angles of the triangle is equal to 180180^\circ i.e. A+B+C=πA + B + C = \pi . Therefore, by the properties of the triangle we know that
sin2A+sin2B+sin2C=4sinAsinBsinC\sin 2A + \sin 2B + \sin 2C = 4\sin A\sin B\sin C
sinA+sinB+sinC=4cosA2cosB2cosC2\sin A + \sin B + \sin C = 4\cos \dfrac{A}{2}\cos \dfrac{B}{2}\cos \dfrac{C}{2}
Therefore, by putting these values in the equation, we get
acosA+bcosB+ccosCa+b+c=R(4sinAsinBsinC)2R(4cosA2cosB2cosC2)\Rightarrow \dfrac{{a\cos A + b\cos B + c\cos C}}{{a + b + c}} = \dfrac{{R\left( {4\sin A\sin B\sin C} \right)}}{{2R\left( {4\cos \dfrac{A}{2}\cos \dfrac{B}{2}\cos \dfrac{C}{2}} \right)}}
We will simplify the equation further. Therefore, we get
acosA+bcosB+ccosCa+b+c=4R(sinAsinBsinC)8R(cosA2cosB2cosC2)\Rightarrow \dfrac{{a\cos A + b\cos B + c\cos C}}{{a + b + c}} = \dfrac{{4R\left( {\sin A\sin B\sin C} \right)}}{{8R\left( {\cos \dfrac{A}{2}\cos \dfrac{B}{2}\cos \dfrac{C}{2}} \right)}}
Now again we will use the basic trigonometric property i.e. sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta . Therefore, we will use this in the numerator of the equation only. Therefore, we get
acosA+bcosB+ccosCa+b+c=4R(2sinA2cosA22sinB2cosB22sinC2cosC2)8R(cosA2cosB2cosC2)\Rightarrow \dfrac{{a\cos A + b\cos B + c\cos C}}{{a + b + c}} = \dfrac{{4R\left( {2\sin \dfrac{A}{2}\cos \dfrac{A}{2} \cdot 2\sin \dfrac{B}{2}\cos \dfrac{B}{2} \cdot 2\sin \dfrac{C}{2}\cos \dfrac{C}{2}} \right)}}{{8R\left( {\cos \dfrac{A}{2}\cos \dfrac{B}{2}\cos \dfrac{C}{2}} \right)}}
Now we will simplify the above equation and cancel out the common terms. Therefore, we get
acosA+bcosB+ccosCa+b+c=4R(8sinA2sinB2sinC2)8R\Rightarrow \dfrac{{a\cos A + b\cos B + c\cos C}}{{a + b + c}} = \dfrac{{4R\left( {8\sin \dfrac{A}{2}\sin \dfrac{B}{2}\sin \dfrac{C}{2}} \right)}}{{8R}}
acosA+bcosB+ccosCa+b+c=4sinA2sinB2sinC2\Rightarrow \dfrac{{a\cos A + b\cos B + c\cos C}}{{a + b + c}} = 4\sin \dfrac{A}{2}\sin \dfrac{B}{2}\sin \dfrac{C}{2}
We know this property of a triangle that 4sinA2sinB2sinC24\sin \dfrac{A}{2}\sin \dfrac{B}{2}\sin \dfrac{C}{2} is equal to the rR\dfrac{r}{R}. Therefore, we get
acosA+bcosB+ccosCa+b+c=rR\Rightarrow \dfrac{{a\cos A + b\cos B + c\cos C}}{{a + b + c}} = \dfrac{r}{R}
Hence, the value of the given expression is equal to rR\dfrac{r}{R}.
So, option A is the correct answer.

Note: While solving the equation we have to use the properties of the triangles which are related to the variables r,Rr,R. We should know the basic property of the triangle that the sum of all the angles of the triangle is equal to 180180^\circ . Here we have used the law of sine to find the values of a,ba,b and cc. Law of sines, states that the ratio of sides of a given triangle and their respective sine angles are equivalent to each other.