Solveeit Logo

Question

Mathematics Question on Arithmetic Progression

In a ΔABC\Delta ABC, the lengths of the two larger sides are 1010 and 99 units, respectively. If the angles are in AP, then the length of the third side can be

A

5±65 \pm \sqrt{6}

B

333 \sqrt{3}

C

55

D

None of these

Answer

5±65 \pm \sqrt{6}

Explanation

Solution

Let A,BA, B and CC be the three angles of ΔABC\Delta A B C
and Let a=10a =10 and b=9b =9
It is given that the angles are in AP.
2B=A+C\therefore 2 B=A+C on adding BB both the sides,
we get 3B=A+B+C3 B=A+B+C
3B=180\Rightarrow 3 B=180^{\circ}
B=60\Rightarrow B=60^{\circ}
Now, we know cosB=a2+c2b22ac\cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}
cos60=102+c2922×10×c\Rightarrow \cos 60^{\circ}=\frac{10^{2}+c^{2}-9^{2}}{2 \times 10 \times c}
12=100+c2812×10×c\Rightarrow \frac{1}{2}=\frac{100+c^{2}-81}{2 \times 10 \times c}
12=100+c28120c\Rightarrow \frac{1}{2}=\frac{100+c^{2}-81}{20 c}
c210c+19=0\Rightarrow c^{2}-10 c+19=0
c=5±6\Rightarrow c=5 \pm \sqrt{6}