Question
Question: In a \({{\Delta ABC,}}\;{\text{if}}\;\left| {\begin{array}{*{20}{c}} {{\text{cot}}\dfrac{{\text{...
In a {{\Delta ABC,}}\;{\text{if}}\;\left| {\begin{array}{*{20}{c}}
{{\text{cot}}\dfrac{{\text{A}}}{{\text{2}}}}&{{\text{cot}}\dfrac{{\text{B}}}{{\text{2}}}}&{{\text{cot}}\dfrac{{\text{C}}}{{\text{2}}}} \\\
{{\text{tan}}\dfrac{{\text{B}}}{{\text{2}}}{\text{ + tan}}\dfrac{{\text{C}}}{{\text{2}}}}&{{\text{tan}}\dfrac{{\text{A}}}{{\text{2}}}{\text{ + tan}}\dfrac{{\text{C}}}{{\text{2}}}}&{{\text{tan}}\dfrac{{\text{A}}}{{\text{2}}}{\text{ + tan}}\dfrac{{\text{B}}}{{\text{2}}}} \\\
{\text{1}}&{\text{1}}&{\text{1}}
\end{array}} \right| = 0, then the triangle must be
A. Equilateral
B. Isosceles
C. Right angled
D. Scalene
Solution
Firstly, simplify the determinant by making elements of a row zero as much as possible and then open the determinant and solve it. Solve it using trigonometric relations, and you will finally get some condition between the angles, through that condition choose the answer from given options.
Complete step by step answer:
In order to find if the given triangle ABC is either equilateral or isosceles or right angled or scalene, we will use the given information in the question that is
\left| {\begin{array}{*{20}{c}}
{{\text{cot}}\dfrac{{\text{A}}}{{\text{2}}}}&{{\text{cot}}\dfrac{{\text{B}}}{{\text{2}}}}&{{\text{cot}}\dfrac{{\text{C}}}{{\text{2}}}} \\\
{{\text{tan}}\dfrac{{\text{B}}}{{\text{2}}}{\text{ + tan}}\dfrac{{\text{C}}}{{\text{2}}}}&{{\text{tan}}\dfrac{{\text{A}}}{{\text{2}}}{\text{ + tan}}\dfrac{{\text{C}}}{{\text{2}}}}&{{\text{tan}}\dfrac{{\text{A}}}{{\text{2}}}{\text{ + tan}}\dfrac{{\text{B}}}{{\text{2}}}} \\\
{\text{1}}&{\text{1}}&{\text{1}}
\end{array}} \right| = 0
Simplifying this determinant by applying column operation as follows
Operating C1−C2andC2−C3 we will get
Now from the trigonometric relation of tangent and cotangent, we know that they are multiplicative inverse of each other, that is cotx=tanx1
Using this to convert cotangents present in the equation into tangent, we will get
Now taking tan2B−tan2Aandtan2C−tan2B common from column one and column two respectively, we will get
{\dfrac{1}{{\tan \dfrac{{\text{A}}}{{\text{2}}}\tan \dfrac{{\text{B}}}{{\text{2}}}}}}&{\dfrac{1}{{\tan \dfrac{{\text{B}}}{{\text{2}}}\tan \dfrac{{\text{C}}}{{\text{2}}}}}}&{{\text{cot}}\dfrac{{\text{C}}}{{\text{2}}}} \\\ 1&1&{{\text{tan}}\dfrac{{\text{A}}}{{\text{2}}}{\text{ + tan}}\dfrac{{\text{B}}}{{\text{2}}}} \\\ 0&0&{\text{1}} \end{array}} \right| = 0$$ Now, expanding the determinant across row three, we will get $$ \Rightarrow \left( {\tan \dfrac{{\text{B}}}{{\text{2}}} - \tan \dfrac{{\text{A}}}{{\text{2}}}} \right)\left( {\tan \dfrac{{\text{C}}}{{\text{2}}} - \tan \dfrac{{\text{B}}}{{\text{2}}}} \right)\left( {\dfrac{1}{{\tan \dfrac{{\text{A}}}{{\text{2}}}\tan \dfrac{{\text{B}}}{{\text{2}}}}} - \dfrac{1}{{\tan \dfrac{{\text{B}}}{{\text{2}}}\tan \dfrac{{\text{C}}}{{\text{2}}}}}} \right) = 0$$ Simplifying it further we will get\Rightarrow \left( {\tan \dfrac{{\text{B}}}{{\text{2}}} - \tan \dfrac{{\text{A}}}{{\text{2}}}} \right)\left( {\tan \dfrac{{\text{C}}}{{\text{2}}} - \tan \dfrac{{\text{B}}}{{\text{2}}}} \right)\left( {\dfrac{{\tan \dfrac{{\text{B}}}{{\text{2}}}\tan \dfrac{{\text{C}}}{{\text{2}}}}}{{\tan \dfrac{{\text{A}}}{{\text{2}}}\tan \dfrac{{\text{B}}}{{\text{2}}}}} - \dfrac{{\tan \dfrac{{\text{A}}}{{\text{2}}}\tan \dfrac{{\text{B}}}{{\text{2}}}}}{{\tan \dfrac{{\text{B}}}{{\text{2}}}\tan \dfrac{{\text{C}}}{{\text{2}}}}}} \right) = 0 \\
\Rightarrow \left( {\tan \dfrac{{\text{B}}}{{\text{2}}} - \tan \dfrac{{\text{A}}}{{\text{2}}}} \right)\left( {\tan \dfrac{{\text{C}}}{{\text{2}}} - \tan \dfrac{{\text{B}}}{{\text{2}}}} \right)\left( {\dfrac{{\tan \dfrac{{\text{C}}}{{\text{2}}} - \tan \dfrac{{\text{A}}}{{\text{2}}}}}{{\tan \dfrac{{\text{A}}}{{\text{2}}}\tan \dfrac{{\text{B}}}{{\text{2}}}\tan \dfrac{{\text{C}}}{{\text{2}}}}}} \right) = 0 \\
\Rightarrow \left( {\tan \dfrac{{\text{B}}}{{\text{2}}} - \tan \dfrac{{\text{A}}}{{\text{2}}}} \right)\left( {\tan \dfrac{{\text{C}}}{{\text{2}}} - \tan \dfrac{{\text{B}}}{{\text{2}}}} \right)\left( {\tan \dfrac{{\text{C}}}{{\text{2}}} - \tan \dfrac{{\text{A}}}{{\text{2}}}} \right) = 0 \\
\Rightarrow \left( {\tan \dfrac{{\text{B}}}{{\text{2}}} - \tan \dfrac{{\text{A}}}{{\text{2}}}} \right) = 0 \\
\Rightarrow \tan \dfrac{{\text{B}}}{{\text{2}}} = \tan \dfrac{{\text{A}}}{{\text{2}}} \\
\Rightarrow \dfrac{{\text{B}}}{{\text{2}}} = \dfrac{{\text{A}}}{{\text{2}}} \\
\Rightarrow {\text{B}} = {\text{A}} \\