Question
Question: In a \[\Delta ABC\], \[\tan A\] and\[\tan B\] satisfy the inequation \[\sqrt 3 {x^2} - 4x + \sqrt 3 ...
In a ΔABC, tanA andtanB satisfy the inequation 3x2−4x+3<0, then
A.a2+b2+ab>c2
B.a2+b2−ab<c2
C.a2+b2>c2
D.None of these
Solution
Hint : In this problem, we need to solve the given inequality satisfied by tanA and tanB in ΔABCFirst, we use factorization method for finding the value ofx.Here, We use the quadratic formula is x=2a−b±b2−4ac. then, comparing with the formula A+B+C=π and also substitute all the values in to this equation, cosC=2aba2+b2−c2.
An inequation is a statement that an inequality or a non-equality holds between two values.
Complete step by step solution:
In the given problem,
Let tanAandtanBsatisfies the inequation
3x2−4x+3<0 ----------(1)
By using the quadratic equation for factoring the equation (1), we can get
The quadratic formula is x=2a−b±b2−4ac
From the equation (1), we have a=3,b=−4,c=3
x=23−(−4)±(−4)2−4(3)(3)
x=234±16−4(3), since (3)2=3
On further simplification, then
x=234±16−12=234±4
By solving the square root of the numerator, we get
x=234±2
Now, We have to find the value of ‘x’, then
If x=234+2, then
⇒x=236=33=3
If x=234−2, then
⇒x=232=31
Therefore, x∈(3,31)
The factors of 3x2−4x+3<0 is (x−3)(3x−1)<0
Therefore,31<x<3
Let us assume, tan A and tan B satisfies ‘x’ value, then
Since, 31<x<3
⇒31<tanA<3 or 31<tanB<3
Now, expanding the equation of tan (x) as tan−1x, we get
⇒tan−1(31)<A<tan−1(3) or tan−1(31)<B<tan−1(3) ------(2)
We know that, from the trigonometric degree table, tan−1(3)=30∘,tan−1(31)=60∘.
Now, we have to draw a triangle ABC as given below.
From the equation (2), we need to finding the radian of tan−1(3)=6π,tan−1(31)=3π.
⇒6π<A<3πor6π<B<3π
By addingAandB, we can get
⇒6π+6π<A+B<3π+3π
⇒62π<A+B<32π
⇒3π<A+B<32π
Now, on comparing the formula A+B+C=π, then the value ofA+B=π−C
⇒3π<π−C<32π
\Rightarrow - \pi + \dfrac{\pi }{3} < \- C < \- \pi + \dfrac{{2\pi }}{3}$$$$$$
By solving radian of both sides of the equation, we get \Rightarrow - \dfrac{{2\pi }}{3} < - C < - \dfrac{\pi }{3} \Rightarrow \dfrac{{2\pi }}{3} > C > \dfrac{\pi }{3}Since,C > \dfrac{\pi }{3},then\cos C > \cos \dfrac{\pi }{3}Weknowthatfromthetrigonometrictable\cos \dfrac{\pi }{3} = \dfrac{1}{2}.Therefore,Thevalueof\cos \dfrac{\pi }{3}is\dfrac{1}{2},thenwecangetWeusethe\cos C < \dfrac{1}{2}substituteintotheformulaweknowtheformulais\cos C = \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}},thenwecanget \Rightarrow \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}} < \dfrac{1}{2} \Rightarrow {a^2} + {b^2} - {c^2} < \dfrac{{2ab}}{2}Onfurthersimplification,wecanexpandingthe‘ab’toLHSwecanget \Rightarrow {a^2} + {b^2} - ab < {c^2}Since,C < \dfrac{{2\pi }}{3},\cos C < \cos \dfrac{{2\pi }}{3}ByusingtheASTCruleoftrigonometry,theangle\pi - \dfrac{\pi }{3}orangle180 - \theta liesinthesecondquadrant.cosinefunctionarenegativehere,hencetheanglemustinnegative,then \Rightarrow \cos \left( {\dfrac{{2\pi }}{3}} \right) = \cos \left( {\pi - \dfrac{\pi }{3}} \right) \Rightarrow \cos \left( {\dfrac{{2\pi }}{3}} \right) = - \dfrac{1}{2}Thevalueof\cos \dfrac{{2\pi }}{3}is - \dfrac{1}{2}Therefore,\cos C > \dfrac{{ - 1}}{2}Weusetheformulais\cos C = \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}},thenwecanget\dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}} > \dfrac{{ - 1}}{2}{a^2} + {b^2} - {c^2} > \dfrac{{ - 2ab}}{2}Bucancelthe2fromnumeratoranddenominator,then{a^2} + {b^2} + ab > {c^2}Therefore,thefinalanswerisoption(A){a^2} + {b^2} + ab > {c^2}$$.
So, the correct answer is “Option A”.
Note : Simply this can also be solve by using a ASTC rule i.e.,
⇒cos(32π)=cos(π−3π)
By using the ASTC rule of trigonometry, the angle π−3π or angle 180−θ lies in the second quadrant. cosine function are negative here, hence the angle must in negative, then
⇒cos(32π)=cos(π−3π)
⇒cos(32π)=−21
While solving this type of question, we must know about the ASTC rule.
And also know the cosine sum or difference identity, for this we have a standard formula. To find the value for the trigonometry function we need the table of trigonometry ratios for standard angles