Solveeit Logo

Question

Question: In a \[\Delta ABC\], \[\tan A\] and\[\tan B\] satisfy the inequation \[\sqrt 3 {x^2} - 4x + \sqrt 3 ...

In a ΔABC\Delta ABC, tanA\tan A andtanB\tan B satisfy the inequation 3x24x+3<0\sqrt 3 {x^2} - 4x + \sqrt 3 < 0, then
A.a2+b2+ab>c2{a^2} + {b^2} + ab > {c^2}
B.a2+b2ab<c2{a^2} + {b^2} - ab < {c^2}
C.a2+b2>c2{a^2} + {b^2} > {c^2}
D.None of these

Explanation

Solution

Hint : In this problem, we need to solve the given inequality satisfied by tanA\tan A and tanB\tan B in ΔABC\Delta ABCFirst, we use factorization method for finding the value ofx.x.Here, We use the quadratic formula is x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}. then, comparing with the formula A+B+C=πA + B + C = \pi and also substitute all the values in to this equation, cosC=a2+b2c22ab\cos C = \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}}.
An inequation is a statement that an inequality or a non-equality holds between two values.

Complete step by step solution:
In the given problem,
Let tanA\tan AandtanB\tan Bsatisfies the inequation
3x24x+3<0\sqrt 3 {x^2} - 4x + \sqrt 3 < 0 ----------(1)
By using the quadratic equation for factoring the equation (1), we can get
The quadratic formula is x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}
From the equation (1), we have a=3,b=4,c=3a = \sqrt 3 ,b = - 4,c = \sqrt 3
x=(4)±(4)24(3)(3)23x = \dfrac{{ - ( - 4) \pm \sqrt {{{( - 4)}^2} - 4(\sqrt 3 )(\sqrt 3 )} }}{{2\sqrt 3 }}
x=4±164(3)23x = \dfrac{{4 \pm \sqrt {16 - 4(3)} }}{{2\sqrt 3 }}, since (3)2=3{(\sqrt 3 )^2} = 3
On further simplification, then
x=4±161223=4±423x = \dfrac{{4 \pm \sqrt {16 - 12} }}{{2\sqrt 3 }} = \dfrac{{4 \pm \sqrt 4 }}{{2\sqrt 3 }}
By solving the square root of the numerator, we get
x=4±223x = \dfrac{{4 \pm 2}}{{2\sqrt 3 }}
Now, We have to find the value of ‘x’, then
If x=4+223x = \dfrac{{4 + 2}}{{2\sqrt 3 }}, then
x=623=33=3\Rightarrow x = \dfrac{6}{{2\sqrt 3 }} = \dfrac{3}{{\sqrt 3 }} = \sqrt 3
If x=4223x = \dfrac{{4 - 2}}{{2\sqrt 3 }}, then
x=223=13\Rightarrow x = \dfrac{2}{{2\sqrt 3 }} = \dfrac{1}{{\sqrt 3 }}
Therefore, x(3,13)x \in \left( {\sqrt 3 ,\dfrac{1}{{\sqrt 3 }}} \right)
The factors of 3x24x+3<0\sqrt 3 {x^2} - 4x + \sqrt 3 < 0 is (x3)(3x1)<0(x - \sqrt 3 )(\sqrt 3 x - 1) < 0
Therefore,13<x<3\dfrac{1}{{\sqrt 3 }} < x < \sqrt 3
Let us assume, tan A and tan B satisfies ‘x’ value, then
Since, 13<x<3\dfrac{1}{{\sqrt 3 }} < x < \sqrt 3
13<tanA<3\Rightarrow \dfrac{1}{{\sqrt 3 }} < \tan A < \sqrt 3 or 13<tanB<3\dfrac{1}{{\sqrt 3 }} < \tan B < \sqrt 3
Now, expanding the equation of tan (x) as tan1x{\tan ^{ - 1}}x, we get
tan1(13)<A<tan1(3)\Rightarrow {\tan ^{ - 1}}(\dfrac{1}{{\sqrt 3 }}) < A < {\tan ^{ - 1}}(\sqrt 3 ) or tan1(13)<B<tan1(3){\tan ^{ - 1}}(\dfrac{1}{{\sqrt 3 }}) < B < {\tan ^{ - 1}}(\sqrt 3 ) ------(2)
We know that, from the trigonometric degree table, tan1(3)=30,tan1(13)=60{\tan ^{ - 1}}\left( {\sqrt 3 } \right) = {30^ \circ },{\tan ^{ - 1}}\left( {\dfrac{1}{{\sqrt 3 }}} \right) = {60^ \circ }.
Now, we have to draw a triangle ABC as given below.

From the equation (2), we need to finding the radian of tan1(3)=π6,tan1(13)=π3{\tan ^{ - 1}}\left( {\sqrt 3 } \right) = \dfrac{\pi }{6},{\tan ^{ - 1}}\left( {\dfrac{1}{{\sqrt 3 }}} \right) = \dfrac{\pi }{3}.
π6<A<π3\Rightarrow \dfrac{\pi }{6} < A < \dfrac{\pi }{3}orπ6<B<π3\dfrac{\pi }{6} < B < \dfrac{\pi }{3}
By addingAAandBB, we can get
π6+π6<A+B<π3+π3\Rightarrow \dfrac{\pi }{6} + \dfrac{\pi }{6} < A + B < \dfrac{\pi }{3} + \dfrac{\pi }{3}
2π6<A+B<2π3\Rightarrow \dfrac{{2\pi }}{6} < A + B < \dfrac{{2\pi }}{3}
π3<A+B<2π3\Rightarrow \dfrac{\pi }{3} < A + B < \dfrac{{2\pi }}{3}
Now, on comparing the formula A+B+C=πA + B + C = \pi , then the value ofA+B=πCA + B = \pi - C
π3<πC<2π3\Rightarrow \dfrac{\pi }{3} < \pi - C < \dfrac{{2\pi }}{3}
\Rightarrow - \pi + \dfrac{\pi }{3} < \- C < \- \pi + \dfrac{{2\pi }}{3}$$$$$$ By solving radian of both sides of the equation, we get \Rightarrow - \dfrac{{2\pi }}{3} < - C < - \dfrac{\pi }{3} \Rightarrow \dfrac{{2\pi }}{3} > C > \dfrac{\pi }{3}Since, Since,C > \dfrac{\pi }{3},then, then \cos C > \cos \dfrac{\pi }{3}Weknowthatfromthetrigonometrictable We know that from the trigonometric table\cos \dfrac{\pi }{3} = \dfrac{1}{2}.Therefore,Thevalueof. Therefore, The value of \cos \dfrac{\pi }{3}isis\dfrac{1}{2},thenwecangetWeusethe, then we can get We use the \cos C < \dfrac{1}{2}substituteintotheformulaweknowtheformulaissubstitute into the formula we know the formula is\cos C = \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}},thenwecanget, then we can get \Rightarrow \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}} < \dfrac{1}{2} \Rightarrow {a^2} + {b^2} - {c^2} < \dfrac{{2ab}}{2}Onfurthersimplification,wecanexpandingtheabtoLHSwecanget On further simplification, we can expanding the ‘ab’ to LHS we can get \Rightarrow {a^2} + {b^2} - ab < {c^2}Since, Since,C < \dfrac{{2\pi }}{3},,\cos C < \cos \dfrac{{2\pi }}{3}ByusingtheASTCruleoftrigonometry,theangle By using the ASTC rule of trigonometry, the angle\pi - \dfrac{\pi }{3}orangleor angle180 - \theta liesinthesecondquadrant.cosinefunctionarenegativehere,hencetheanglemustinnegative,thenlies in the second quadrant. cosine function are negative here, hence the angle must in negative, then \Rightarrow \cos \left( {\dfrac{{2\pi }}{3}} \right) = \cos \left( {\pi - \dfrac{\pi }{3}} \right) \Rightarrow \cos \left( {\dfrac{{2\pi }}{3}} \right) = - \dfrac{1}{2}Thevalueof The value of\cos \dfrac{{2\pi }}{3}isis - \dfrac{1}{2}Therefore, Therefore,\cos C > \dfrac{{ - 1}}{2}Weusetheformulais We use the formula is\cos C = \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}},thenwecanget, then we can get \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}} > \dfrac{{ - 1}}{2} {a^2} + {b^2} - {c^2} > \dfrac{{ - 2ab}}{2}Bucancelthe2fromnumeratoranddenominator,then Bu cancel the 2 from numerator and denominator, then {a^2} + {b^2} + ab > {c^2}Therefore,thefinalanswerisoption(A) Therefore, the final answer is option (A){a^2} + {b^2} + ab > {c^2}$$.
So, the correct answer is “Option A”.

Note : Simply this can also be solve by using a ASTC rule i.e.,
cos(2π3)=cos(ππ3)\Rightarrow \cos \left( {\dfrac{{2\pi }}{3}} \right) = \cos \left( {\pi - \dfrac{\pi }{3}} \right)
By using the ASTC rule of trigonometry, the angle ππ3\pi - \dfrac{\pi }{3} or angle 180θ180 - \theta lies in the second quadrant. cosine function are negative here, hence the angle must in negative, then
cos(2π3)=cos(ππ3)\Rightarrow \cos \left( {\dfrac{{2\pi }}{3}} \right) = \cos \left( {\pi - \dfrac{\pi }{3}} \right)
cos(2π3)=12\Rightarrow \cos \left( {\dfrac{{2\pi }}{3}} \right) = - \dfrac{1}{2}
While solving this type of question, we must know about the ASTC rule.
And also know the cosine sum or difference identity, for this we have a standard formula. To find the value for the trigonometry function we need the table of trigonometry ratios for standard angles