Solveeit Logo

Question

Question: In a \(\Delta ABC\) , if \(\cos A\cos B\cos C = \dfrac{{\sqrt 3 - 1}}{8}\) and \(\sin A\sin B\sin C ...

In a ΔABC\Delta ABC , if cosAcosBcosC=318\cos A\cos B\cos C = \dfrac{{\sqrt 3 - 1}}{8} and sinAsinBsinC=3+38\sin A\sin B\sin C = \dfrac{{3 + \sqrt 3 }}{8} , then the value of tanAtanB+tanBtanC+tanCtanA\tan A\tan B + \tan B\tan C + \tan C\tan A is

Explanation

Solution

To find the value, we convert all the terms of the given equation into the form of sin and cos functions using the definition of tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}, such that the given values of sin and cos functions can be used.

Complete step-by-step answer:
Given Data,
cosAcosBcosC=318\cos A\cos B\cos C = \dfrac{{\sqrt 3 - 1}}{8} and sinAsinBsinC=3+38\sin A\sin B\sin C = \dfrac{{3 + \sqrt 3 }}{8} .
Now, we have to find the value of tanAtanB+tanBtanC+tanCtanA\tan A\tan B + \tan B\tan C + \tan C\tan A
As we know the value of tangent of an angle in terms of sine and cosine is given as:
tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}
So, let us substitute the value in the above function.
=tanAtanB+tanBtanC+tanCtanA =sinAcosAsinBcosB+sinBcosBsinCcosC+sinCcosCsinAcosA  = \tan A\tan B + \tan B\tan C + \tan C\tan A \\\ = \dfrac{{\sin A}}{{\cos A}}\dfrac{{\sin B}}{{\cos B}} + \dfrac{{\sin B}}{{\cos B}}\dfrac{{\sin C}}{{\cos C}} + \dfrac{{\sin C}}{{\cos C}}\dfrac{{\sin A}}{{\cos A}} \\\
Let us now take the LCM to solve further.
=sinAsinBcosC+sinCsinBcosA+sinAsinCcosBcosAcosBcosC= \dfrac{{\sin A\sin B\cos C + \sin C\sin B\cos A + \sin A\sin C\cos B}}{{\cos A\cos B\cos C}}
Now let us take some term common in the numerator to solve further by the use of formula.
=sinAsinBcosC+sinC(sinBcosA+sinAcosB)cosAcosBcosC= \dfrac{{\sin A\sin B\cos C + \sin C\left( {\sin B\cos A + \sin A\cos B} \right)}}{{\cos A\cos B\cos C}}
As we know that the formula for sum of the sine of the angle is given as:
sin(x+y)=sinxcosy+sinycosx\Rightarrow \sin \left( {x + y} \right) = \sin x\cos y + \sin y\cos x
Let us use the above formula in the above term to solve further.
=sinAsinBcosC+sinCsin(A+B)cosAcosBcosC= \dfrac{{\sin A\sin B\cos C + \sin C\sin \left( {A + B} \right)}}{{\cos A\cos B\cos C}}
Given that angle A, B and C are part of the triangle so we have the relation between the angles of the triangle given as:
A+B+C=1800 A+B=1800C sin(A+B)=sin(1800C) sin(A+B)=sinC(1) [sin(1800θ)=sinθ] cos(A+B)=cos(1800C) cos(A+B)=cosC(2) [cos(1800θ)=cosθ]  \Rightarrow A + B + C = {180^0} \\\ \Rightarrow A + B = {180^0} - C \\\ \Rightarrow \sin \left( {A + B} \right) = \sin \left( {{{180}^0} - C} \right) \\\ \Rightarrow \sin \left( {A + B} \right) = \sin C - - - - \left( 1 \right){\text{ }}\left[ {\because \sin \left( {{{180}^0} - \theta } \right) = \sin \theta } \right] \\\ \Rightarrow \cos \left( {A + B} \right) = \cos \left( {{{180}^0} - C} \right) \\\ \Rightarrow \cos \left( {A + B} \right) = - \cos C - - - - \left( 2 \right){\text{ }}\left[ {\because \cos \left( {{{180}^0} - \theta } \right) = \cos \theta } \right] \\\
Let us substitute this result from equation (1) in the given term.
=sinAsinBcosC+sinCsinCcosAcosBcosC   [sin(A+B)=sinC] =sinAsinBcosC+sin2CcosAcosBcosC  = \dfrac{{\sin A\sin B\cos C + \sin C\sin C}}{{\cos A\cos B\cos C}}\;{\text{ }}\left[ {\because \sin \left( {A + B} \right) = \sin C} \right] \\\ = \dfrac{{\sin A\sin B\cos C + {{\sin }^2}C}}{{\cos A\cos B\cos C}} \\\
We know the identity
sin2θ+cos2θ=1 sin2θ=1cos2θ  {\sin ^2}\theta + {\cos ^2}\theta = 1 \\\ \Rightarrow {\sin ^2}\theta = 1 - {\cos ^2}\theta \\\
Let us substitute this in the above problem and let us take some common terms in the numerator.
=sinAsinBcosC+1cos2CcosAcosBcosC =1+cosC(cosC+sinAsinB)cosAcosBcosC  = \dfrac{{\sin A\sin B\cos C + 1 - {{\cos }^2}C}}{{\cos A\cos B\cos C}} \\\ = \dfrac{{1 + \cos C\left( { - \cos C + \sin A\sin B} \right)}}{{\cos A\cos B\cos C}} \\\
Let us substitute the value from equation (2) in the above equation.

=1+cosC(cos(A+B)+sinAsinB)cosAcosBcosC [cos(A+B)=cosC] =1+cosC(cosAcosBsinAsinB+sinAsinB)cosAcosBcosC [cos(A+B)=cosAcosBsinAsinB] =1+cosC(cosAcosB)cosAcosBcosC =1cosAcosBcosC+1  = \dfrac{{1 + \cos C\left( {\cos \left( {A + B} \right) + \sin A\sin B} \right)}}{{\cos A\cos B\cos C}}{\text{ }}\left[ {\because \cos \left( {A + B} \right) = - \cos C} \right] \\\ = \dfrac{{1 + \cos C\left( {\cos A\cos B - \sin A\sin B + \sin A\sin B} \right)}}{{\cos A\cos B\cos C}}{\text{ }}\left[ {\because \cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B} \right] \\\ = \dfrac{{1 + \cos C\left( {\cos A\cos B} \right)}}{{\cos A\cos B\cos C}} \\\ = \dfrac{1}{{\cos A\cos B\cos C}} + 1 \\\

Now let us substitute the value of terms given in the problem to find the final value.
1cosAcosBcosC+1=1(318)+1 [cosAcosBcosC=318]\Rightarrow \dfrac{1}{{\cos A\cos B\cos C}} + 1 = \dfrac{1}{{\left( {\dfrac{{\sqrt 3 - 1}}{8}} \right)}} + 1{\text{ }}\left[ {\because \cos A\cos B\cos C = \dfrac{{\sqrt 3 - 1}}{8}} \right]
Let us now simplify the term.

=8+3131 =7+331 tanAtanB+tanBtanC+tanCtanA=7+331  = \dfrac{{8 + \sqrt 3 - 1}}{{\sqrt 3 - 1}} \\\ = \dfrac{{7 + \sqrt 3 }}{{\sqrt 3 - 1}} \\\ \Rightarrow \tan A\tan B + \tan B\tan C + \tan C\tan A = \dfrac{{7 + \sqrt 3 }}{{\sqrt 3 - 1}} \\\

Hence, the value of tanAtanB+tanBtanC+tanCtanA\tan A\tan B + \tan B\tan C + \tan C\tan A is 7+331\dfrac{{7 + \sqrt 3 }}{{\sqrt 3 - 1}}

Note: In order to solve problems of this type the key is to observe that as the given angles are of a triangle sin(A+B)=sinC\sin \left( {A + B} \right) = \sin C , as the sum of angles in a triangle is 180 degrees. Adequate knowledge in the trigonometric conversions and formulae is required to re-arrange the given equation and simplify.