Question
Mathematics Question on Inverse Trigonometric Functions
In a ΔABC, if A=tan−12 and B=tan−13 , then C=
A
3π
B
4π
C
6π
D
43π
Answer
4π
Explanation
Solution
We have, A=tan−12⇒tanA=2 and B=tan−13⇒tanB=3 since A,B,C are angles of a triangle, A+B+C=π ⇒C=π−(A+B) Now, A+B=tan−12+tan−13=π+tan−1[1−2.32+3] [∴tan−1x+tan−1y=π+tan−1[1−xyx+y]forx>0,y>0andxy>1] =π+tan−1(−1)=π−tan−11=π−4π=43π ∴From(1),C=π−43π=4π