Solveeit Logo

Question

Question: In a \(\Delta ABC\), if \({{a}^{2}},{{b}^{2}},{{c}^{2}}\) are in A.P. , then show that \(\cot A,\cot...

In a ΔABC\Delta ABC, if a2,b2,c2{{a}^{2}},{{b}^{2}},{{c}^{2}} are in A.P. , then show that cotA,cotB,cotC\cot A,\cot B,\cot C are also in AP.

Explanation

Solution

From the question we know that a2,b2,c2{{a}^{2}},{{b}^{2}},{{c}^{2}} are in A.P. so the common difference between a2{{a}^{2}} and b2{{b}^{2}} is equal to common difference between b2{{b}^{2}}and c2{{c}^{2}}. So, it can be written as b2a2=c2b2{{b}^{2}}-{{a}^{2}}={{c}^{2}}-{{b}^{2}}. Then, we will apply the sine rule of triangle (i.e.asinA=bsinB=csinC=k)\left( i.e.\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=k \right) and replace a, b, c by ksinA,ksinB,ksinCk\sin A, k\sin B, k\sin C and then try to convert all of them into cotA,cotB,cotC\cot A,\cot B,\cot C and find relation among them using the property
sin2Asin2B=sin(A+B)sin(AB){{\sin }^{2}}A-{{\sin }^{2}}B=\sin \left( A+B \right)\sin \left( A-B \right) and sin(AB)=sinAcosBsinBcosA\sin \left( A-B \right)=\sin A\cos B-\sin B\cos A

Complete step by step answer:

From the figure, we can see that in ΔABC\Delta ABC a, b, and c are opposite sides of the angle A, angle B, angle C.
Since, it in the question that in a ΔABC\Delta ABC ,a2,b2,c2{{a}^{2}}, {{b}^{2}}, {{c}^{2}} are in A.P., so the common difference between a2{{a}^{2}} and b2{{b}^{2}}is equal to common difference between b2{{b}^{2}} and c2{{c}^{2}}.
Hence, it can be written as:
b2a2=c2b2...................(1){{b}^{2}}-{{a}^{2}}={{c}^{2}}-{{b}^{2}}...................(1)
Now, from the sine rule of a triangle we know that:
asinA=bsinB=csinC=k\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=k
a=ksinA\therefore a=k\sin A, b=ksinBb=k\sin B and c=ksinCc=k\sin C
Now, after putting the value of a, b, c in equation (1) we will get:
k2sin2Bk2sin2A=k2sin2Ck2sin2B{{k}^{2}}{{\sin }^{2}}B-{{k}^{2}}{{\sin }^{2}}A={{k}^{2}}{{\sin }^{2}}C-{{k}^{2}}{{\sin }^{2}}B
k2(sin2Bsin2A)=k2(sin2Csin2B)\Rightarrow {{k}^{2}}\left( {{\sin }^{2}}B-{{\sin }^{2}}A \right)={{k}^{2}}\left( {{\sin }^{2}}C-{{\sin }^{2}}B \right)
(sin2Bsin2A)=(sin2Csin2B)\therefore \left( {{\sin }^{2}}B-{{\sin }^{2}}A \right)=\left( {{\sin }^{2}}C-{{\sin }^{2}}B \right)
We know that sin2Asin2B=sin(A+B)sin(AB){{\sin }^{2}}A-{{\sin }^{2}}B=\sin \left( A+B \right)\sin \left( A-B \right):
Hence, the above equation can be rewritten as:
sin(B+A)sin(BA)=sin(C+B)sin(CB)................(2)\Rightarrow \sin \left( B+A \right)\sin \left( B-A \right)=\sin \left( C+B \right)\sin \left( C-B \right)................(2)
Now, for every ΔABC\Delta ABC, we know that:
A+B+C=π=180A+B+C=\pi =180{}^\circ
(B+A)=πC\therefore \left( B+A \right)=\pi -Cand (C+B)=πA\left( C+B \right)=\pi -A
Now, put (B+A)=πC\left( B+A \right)=\pi -Cand (C+B)=πA\left( C+B \right)=\pi -Ain equation (2).
sin(πC)sin(BA)=sin(πA)sin(CB)\Rightarrow \sin \left( \pi -C \right)\sin \left( B-A \right)=\sin \left( \pi -A \right)\sin \left( C-B \right)
We know that sin(πC)=sinC\sin \left( \pi -C \right)=\sin Cand sin(πA)=sinA\sin \left( \pi -A \right)=\sin A, we also know that sin(AB)=sinAcosBsinBcosA\sin \left( A-B \right)=\sin A\cos B-\sin B\cos A
sinCsin(BA)=sinAsin(CB)\Rightarrow \sin C\sin \left( B-A \right)=\sin A\sin \left( C-B \right)
sinC(sinBcosAsinAcosB)=sinA(sinCcosBsinBcosC)\Rightarrow \sin C\left( sinB\cos A-\sin A\cos B \right)=\sin A\left( \sin C\cos B-\sin B\cos C \right)
sinCsinBcosAsinCsinAcosB=sinAsinCcosBsinAsinBcosC\Rightarrow \sin C\sin B\cos A-\sin C\sin A\cos B=\sin A\sin C\cos B-\sin A\sin B\cos C
Now, after dividing both the side of the equation by sinAsinBsinC\sin A\sin B\sin C,we will get:
sinCsinBcosAsinAsinBsinCsinCsinAcosBsinAsinBsinC=sinAsinCcosBsinAsinBsinCsinAsinBcosCsinAsinBsinC\Rightarrow \dfrac{\sin C\sin B\cos A}{\sin A\sin B\sin C}-\dfrac{\sin C\sin A\cos B}{\sin A\sin B\sin C}=\dfrac{\sin A\sin C\cos B}{\sin A\sin B\sin C}-\dfrac{\sin A\sin B\cos C}{\sin A\sin B\sin C}
cosAsinAcosBsinB=cosBsinBcosCsinC\Rightarrow \dfrac{\cos A}{\sin A}-\dfrac{\cos B}{\sin B}=\dfrac{\cos B}{\sin B}-\dfrac{\cos C}{\sin C}
cotAcotB=cotBcotC\Rightarrow \cot A-\cot B=\cot B-\cot C
2cotB=cotA+cotC................(3)\Rightarrow 2\cot B=\cot A+\cot C................(3)
We know that if a,b,ca,b,c are A.P. then 2b=a+c2b=a+c
So, from equation (3) we can say that cotA,cotB,cotC\cot A,\cot B,\cot C are in A.P.
Hence, it is proved that cotA,cotB,cotC\cot A,\cot B,\cot C are in A.P.

Note: The above question uses so many trigonometric formulas, so students are required to memorize them, and use them carefully, and so that chance of making mistakes reduces. We usually
used to write sine rule for ABC\vartriangle ABC as sinAa=sinBb=sinCc=k\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}=k, but it is wrong , the correct form of it is asinA=bsinB=csinC=k\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=k. So, students should avoid these mistakes.