Solveeit Logo

Question

Question: In a \(\Delta ABC\), if \({{a}^{2}}+{{b}^{2}}+{{c}^{2}}=ac+\sqrt{3}ab\) , then the triangle is A. ...

In a ΔABC\Delta ABC, if a2+b2+c2=ac+3ab{{a}^{2}}+{{b}^{2}}+{{c}^{2}}=ac+\sqrt{3}ab , then the triangle is
A. Equilateral
B. Right-angled and isosceles
C. Right angled and not isosceles
D. None of the above

Explanation

Solution

Hint: We have to see whether the triangle is of which type. So use a2=b2+c22bccosA{{a}^{2}}={{b}^{2}}+{{c}^{2}}-2bc\cos A, b2=a2+c22accosB{{b}^{2}}={{a}^{2}}+{{c}^{2}}-2ac\cos B ,c2=a2+b22abcosC{{c}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\cos Cand compare it with a2+b2+c2=ac+3ab{{a}^{2}}+{{b}^{2}}+{{c}^{2}}=ac+\sqrt{3}ab. You will get the answer.

Complete step by step solution:

In ΔABC\Delta ABC, we have given a2+b2+c2=ac+3ab{{a}^{2}}+{{b}^{2}}+{{c}^{2}}=ac+\sqrt{3}ab.
But we know that in ΔABC\Delta ABC,
a2=b2+c22bccosA b2=a2+c22accosB c2=a2+b22abcosC \begin{aligned} & {{a}^{2}}={{b}^{2}}+{{c}^{2}}-2bc\cos A \\\ & {{b}^{2}}={{a}^{2}}+{{c}^{2}}-2ac\cos B \\\ & {{c}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\cos C \\\ \end{aligned}
Now adding above three equations we get,
a2+b2+c2=b2+c22bccosA+a2+c22accosB+a2+b22abcosC{{a}^{2}}+{{b}^{2}}+{{c}^{2}}={{b}^{2}}+{{c}^{2}}-2bc\cos A+{{a}^{2}}+{{c}^{2}}-2ac\cos B+{{a}^{2}}+{{b}^{2}}-2ab\cos C
Simplifying we get,
a2+b2+c2=2bccosA+2accosB+2abcosC{{a}^{2}}+{{b}^{2}}+{{c}^{2}}=2bc\cos A+2ac\cos B+2ab\cos C
Now in question we are given a2+b2+c2=ac+3ab{{a}^{2}}+{{b}^{2}}+{{c}^{2}}=ac+\sqrt{3}ab.
So comparing we get,
2cosA=02\cos A=0 , cosB=12\cos B=\dfrac{1}{2} and cosC=32\cos C=\dfrac{\sqrt{3}}{2}.
cosA=cosπ2\cos A=\cos \dfrac{\pi }{2}, cosB=cosπ3\cos B=\cos \dfrac{\pi }{3} and cosC=cosπ6\cos C=\cos \dfrac{\pi }{6}.
So from above we get that the triangle is a right angled triangle and not isosceles.
The correct answer is option (C).

Note: Read the question carefully. Also, you must know the concept regarding all types of triangles.
Also, take care while comparing. Do not miss any term while subtracting. Take care that no terms are
missing.