Solveeit Logo

Question

Mathematics Question on Trigonometric Equations

In a ΔABC(a+b+c)(b+ca)(c+ab)(a+bc)4b2c2\Delta A B C \frac{(a+b+c)(b+c-a)(c+a-b)(a+b-c)}{4 b^{2} c^{2}} equals

A

cos2A\cos ^{2} A

B

cos2B\cos ^{2} B

C

sin2A\sin ^{2} A

D

sin2B\sin ^{2} B

Answer

sin2A\sin ^{2} A

Explanation

Solution

The correct answer is C:sin2Asin^2A
We know that, 2s=a+b+c2 s=a+b+c
(a+b+c)(b+ca)(c+ab)(a+bc)4b2c2\therefore \frac{(a+b+c)(b+c-a)(c+a-b)(a+b-c)}{4 b^{2} c^{2}}
=2s(2s2a)(2s2b)(2s2c)4b2c2=\frac{2 s(2 s-2 a)(2 s-2 b)(2 s-2 c)}{4 b^{2} c^{2}}
=4s(sa)bc×(sa)(sc)bc=4 \frac{s(s-a)}{b c} \times \frac{(s-a)(s-c)}{b c}
=4cos2A2×sin2A2=4 \cos ^{2} \frac{A}{2} \times \sin ^{2} \frac{A}{2}
=sin2A=\sin ^{2} A
equations