Solveeit Logo

Question

Question: In a DABC, if P,Q,R divide sides AB, BC, CA respectively in k : 1. If \(\frac { \text { area of } \...

In a DABC, if P,Q,R divide sides AB, BC, CA respectively in k : 1. If  area of PQR area of ABC=13\frac { \text { area of } \triangle \mathrm { PQR } } { \text { area of } \triangle \mathrm { ABC } } = \frac { 1 } { 3 } , then k equals

A

1

B

2

C

12\frac { 1 } { 2 }

D

None

Answer

2

Explanation

Solution

Area of (D ARQ) = 12kck+1 bk+1\frac { 1 } { 2 } \frac { \mathrm { kc } } { \mathrm { k } + 1 } \frac { \mathrm {~b} } { \mathrm { k } + 1 }sinA

= 12k(k+1)2\frac { 1 } { 2 } \frac { \mathrm { k } } { ( \mathrm { k } + 1 ) ^ { 2 } } bc sinA

= k(k+1)2\frac { \mathrm { k } } { ( \mathrm { k } + 1 ) ^ { 2 } } D

similarly area of (DBRP)

= area (D PQC) =

̃ area (D PQR) = D – = (k2k+1k2+2k+1)\left( \frac { \mathrm { k } ^ { 2 } - \mathrm { k } + 1 } { \mathrm { k } ^ { 2 } + 2 \mathrm { k } + 1 } \right) D

Now

= k2k+1k2+2k+1=13\frac { \mathrm { k } ^ { 2 } - \mathrm { k } + 1 } { \mathrm { k } ^ { 2 } + 2 \mathrm { k } + 1 } = \frac { 1 } { 3 } ̃ k = 2