Solveeit Logo

Question

Question: In a DABC, if a, b, c and A are given, then there are two D’s with third sides c<sub>1</sub> and c<s...

In a DABC, if a, b, c and A are given, then there are two D’s with third sides c1 and c2, then (c1 – c2) is –

A

Ab sin A

B
C

2a2b2sin2A2 \sqrt { a ^ { 2 } - b ^ { 2 } \sin ^ { 2 } A }

D

2ab sin A

Answer

2a2b2sin2A2 \sqrt { a ^ { 2 } - b ^ { 2 } \sin ^ { 2 } A }

Explanation

Solution

a2 = b2 + c2 – 2bc cos A

̃ c2 – 2bc cos A + (b2 – a2) = 0

Clearly c1 and c2 are roots of equation

c1 + c2 = 2b cos A, c1c2 = b2 – a2

\ c1 – c2 =

= 4b2cos2A4(b2a2)\sqrt { 4 b ^ { 2 } \cos ^ { 2 } A - 4 \left( b ^ { 2 } - a ^ { 2 } \right) }

=

= 2a2b2sin2A2 \sqrt { a ^ { 2 } - b ^ { 2 } \sin ^ { 2 } A } .