Solveeit Logo

Question

Question: In a cylinder, there are \[60g\] \( Ne\) and \(64g\) \({O_2}\). If the pressure mixture of gases in ...

In a cylinder, there are 60g60g Ne Ne and 64g64g O2{O_2}. If the pressure mixture of gases in the cylinder is 3030 bar then in this cylinder the partial pressure (in bar) of O2{O_2} is

A) 3030

B) 2020

C) 1515

D) 1212

Explanation

Solution

To solve this particular problem let us remember about the mole fraction of gas. The mole fraction of a gas is the ratio of the mole number of the gas and the mole number of all gases present in the gas mixture.

Formula used:

p = mole fraction×P{\text{p = mole fraction} \times {P}}, PP is the total pressure of the gases.

The mole number of gas, n = amount of the gas in the mixtureatomic mass of the gas{\text{n = }}\dfrac{{{\text{amount of the gas in the mixture}}}}{{{\text{atomic mass of the gas}}}}

The mole fraction = mole number of the gas(n) total mole number of the gases exist in the mixture{\text{The mole fraction = }}\dfrac{{{\text{mole number of the gas(n)}}}}{{{\text{ total mole number of the gases exist in the mixture}}}}

Complete step by step answer:

According to Dalton’s law, the total pressure of a gas mixture is the sum of the partial pressure of each of the gas presents in the mixture.

The mole fraction of a gas is the ratio of the mole number of the gas and the mole number of all gases present in the gas mixture. Such as,

The mole fraction = mole number of the gas(n) total mole number of the gases exist in the mixture{\text{ = }}\dfrac{{{\text{mole number of the gas(n)}}}}{{{\text{ total mole number of the gases exist in the mixture}}}}

And the partial pressure of an individual gas is calculated by the following relation,

the partial pressure of one gas p = mole fraction×P{\text{p = mole fraction} \times {P}} (Total pressure of the mixture)

Here given in a gas mixture of NeNe and O2{O_2},

The amount of Ne=60gNe = 60g

And the amount of O2=64g{O_2} = 64g.

The atomic mass of Neon gas is 2020 and the atomic mass of an oxygen molecule is 3232.

Since, The mole number of gas, n = amount of the gas in the mixtureatomic mass of the gas{\text{n = }}\dfrac{{{\text{amount of the gas in the mixture}}}}{{{\text{atomic mass of the gas}}}}

The mole number of Ne

nNe=6020 \Rightarrow {n_{Ne}} = \dfrac{{60}}{{20}}

nNe=3 \Rightarrow {n_{Ne}} = 3 The mole number of O2{O_2}

nO2=6432 \Rightarrow {n_{{O_2}}} = \dfrac{{64}}{{32}}

nO2=2 \Rightarrow {n_{{O_2}}} = 2

Since, The mole fraction = mole number of the gas(n) total mole number of the gases exist in the mixture{\text{ = }}\dfrac{{{\text{mole number of the gas(n)}}}}{{{\text{ total mole number of the gases exist in the mixture}}}}

The mole fraction of O2{O_2} = 2 3 + 2{\text{ = }}\dfrac{{\text{2}}}{{{\text{ 3 + 2}}}}

=25=\dfrac{{\text{2}}}{{\text{5}}}

Now, the partial pressure of an individual gas is

p = mole fraction×P{\text{p = mole fraction} \times {P}}

Here given, the pressure mixture of gases i.e. PP= 30 bar.

The partial pressure of O2{O_2} is,

pO2=25×30 \Rightarrow {p_{{O_2}}} = \dfrac{2}{5} \times 30

pO2=12\therefore {p_{{O_2}}} = 12

Therefore The partial pressure of O2{O_2} is 1212 bar. Hence the right answer is in option (D).

Note: Partial pressure is the notational pressure of a constituent gas of a gas-mixture. An individual gas that exists in a gas-mixture occupies the entire volume of the mixture at the same temperature of the partial pressure of that particular gas that can be represented.