Solveeit Logo

Question

Mathematics Question on limits and derivatives

In a culture the bacteria count is 1,00,000. The number is increased by 10% in 2 hours. In how many hours will the count reach 2,00,000 if the rate of growth of bacteria is proportional to the number present.

A

2log1110 \frac{2}{\log \frac{11}{10}}

B

2log2log(1110) \frac{2\log 2}{\log \left(\frac{11}{10}\right)}

C

log2log11 \frac{\log 2}{\log 11 }

D

log2log(1110) \frac{\log 2}{\log \left(\frac{11}{10}\right)}

Answer

2log2log(1110) \frac{2\log 2}{\log \left(\frac{11}{10}\right)}

Explanation

Solution

Let y denote the number of bacteria at any instant t . then according to the question dydtαydyy=kdt\frac{dy}{dt } \alpha y \Rightarrow \frac{dy}{y} = k dt ......(i) k is the constant of proportionality, taken to be + ve on integrating (i), we get logy=kt+c\log y = kt + c ....(ii) c is a parameter. let y0y_0 be the initial number of bacteria i.e., at t=0t = 0 using this in (ii), c=logy0c = \log \, y_0 logy=kt+logy0\Rightarrow \log \, y = kt + \log \, y_{0} logyy0=kt \Rightarrow\log \frac{y}{y_{0}} = kt .....(iii) y=(y0+10100y0)=11y010,t=2y = \left(y_{0} + \frac{10}{100} y_{0}\right) = \frac{11y_{0}}{10}, t = 2 So, from (iii) , we get log11y010y0=k(2)\log \frac{\frac{11y_{0}}{10}}{y_{0}} = k \left(2\right) k=12log1110 \Rightarrow k = \frac{1}{2} \log \frac{11}{10} .........(iv) Using (iv) in (iii) logyy0=12(log1110)t\log \frac{y}{y_{0} } = \frac{1}{2} \left(\log \frac{11}{10}\right)t let the number of bacteria become 1,00,0001, 00, 000 to 2,00,0002,00,000 in t1t_1 hours. i.e., y=2y0y = 2y_0 when t=t1t = t_1 hours. from (v) log2y0y0=12(log1110)t1t1=2log2log1110 \log \frac{2y_{0}}{y_{0}} = \frac{1}{2} \left(\log \frac{11}{10}\right)t_{1} \Rightarrow t_{1} = \frac{2\log 2}{\log \frac{11}{10}} Hence, the reqd. no. of hours =2log2log1110= \frac{ 2\log 2}{\log \frac{11}{10}}