Solveeit Logo

Question

Physics Question on work, energy and power

In a collinear collision, a particle with an initial speed v0v_0 strikes a stationary particle of the same mass. If the final total kinetic energy is 50%50 \% grater than the original kinetic energy, the magnitude of the relative velocity between the two particles, after collision, is -

A

v04\frac{v_0}{4}

B

2v0\sqrt{2} v_0

C

v02\frac{v_0}{2}

D

v02\frac{v_0}{\sqrt{2}}

Answer

2v0\sqrt{2} v_0

Explanation

Solution

It is a case of superelastic collision
mv0=mv1+mv2.(i)m v_{0}=m v_{1}+m v_{2} \,\,\,\, \ldots .(i)
v1+v2=v0\Rightarrow v_{1}+v_{2}=v_{0}
12m(v12+v22)=32(12mv02)\frac{1}{2} m\left(v_{1}^{2}+v_{2}^{2}\right)=\frac{3}{2}\left(\frac{1}{2} m v_{0}^{2}\right)
(v12+v22)=32v02...(ii)\Rightarrow \left(v_{1}^{2}+v_{2}^{2}\right)=\frac{3}{2} v_{0}^{2} \,\,\,\,\,\,...(ii)
(v1+v2)2=v12+v22+2v1v2\Rightarrow \left(v_{1}+v_{2}\right)^{2}=v_{1}^{2}+v_{2}^{2}+2 v_{1} v_{2}
v02=3v022+2v1v2\Rightarrow v_{0}^{2}=\frac{3 v_{0}^{2}}{2}+2 v_{1} v_{2}
2v1v2=v022...(iii)\Rightarrow 2 v_{1} v_{2}=-\frac{v_{0}^{2}}{2}\,\,\,\,\,\,\,\,...(iii)
(v1v2)2=(v1+v2)24v1v2=v02+v02\therefore \left(v_{1}-v_{2}\right)^{2}=\left(v_{1}+v_{2}\right)^{2}-4 v_{1} v_{2}=v_{0}^{2}+v_{0}^{2}
v1v2=2v0\Rightarrow v_{1}-v_{2}=\sqrt{2} v_{0}