Solveeit Logo

Question

Chemistry Question on Equilibrium

In a closed cylinder of capacity 24.6L24.6\,L, the following reaction occurs at 27C27^{\circ} C. A2(s)B2(s)+2C(g)A_{2}(s) \rightleftharpoons B_{2}(s)+2 C(g) At equilibrium, 1g1 \,g of B2(s)B_{2}(s) (molar mass =50gmol1=50\, g\, mol ^{-1} ) is present. The equilibrium constant KpK_{p} for the equilibrium in atm 2^{2} unit is (R=0.082LatmK1mol1)\left(R=0.082\, L\, atm \,K ^{-1} \,mol ^{-1}\right)

A

1.6×1021.6 \times 10^{-2}

B

1.6×1051.6 \times 10^{-5}

C

1.6×1031.6 \times 10^{- 3}

D

1.6×1041.6 \times 10^{-4}

Answer

1.6×1031.6 \times 10^{- 3}

Explanation

Solution

Equilibrium concentration of B2B_{2},

[B2]equilibrium = mass  molar mass × volume \left[B_{2}\right]_{\text {equilibrium }} =\frac{\text { mass }}{\text { molar mass } \times \text { volume }}
=150×24.0=8.13×104=\frac{1}{50 \times 24.0}=8.13 \times 10^{-4}

For the reaction,


[C]=2×8.13×104=1.63×103\therefore[C] =2 \times 8.13 \times 10^{-4}=1.63 \times 10^{-3}
Kc=[C]2=[1.63×103]2=2.66×106K_{c} =[C]^{2}=\left[1.63 \times 10^{-3}\right]^{2}=2.66 \times 10^{-6}

Again from, Kp=KC(KT)ΔnyK_{p}=K_{C}(K T)^{\Delta n_{y}}

Here, Δng=20=2\Delta n_{g}=2-0=2
Kp=2.66×106×(0.082×300)2K_{p} =2.66 \times 10^{-6} \times(0.082 \times 300)^{2}
1.6×103\approx 1.6 \times 10^{-3}