Solveeit Logo

Question

Mathematics Question on Sets

In a class of 55 students, the number of students studying different subjects are 23 in Mathematics, 24 in Physics, 19 in Chemistry, 12 in Mathematics and Physics, 9 in Mathematics and Chemistry, 7 in Physics and Chemistry and 4 in all the three subjects. The number of students who have taken exactly one subject is

A

6

B

9

C

7

D

All of these

Answer

All of these

Explanation

Solution

n(M)=23,n(P)=24,n(C)=19n(M) = 23, n(P) = 24, n(C) =19 n(MP)=12,n(MC)=9,n(PC)=7n(M \cap P) =12,n(M \cap C) = 9,n(P \cap C) = 7 n(MPC)=4n(M \cap P \cap C) = 4 We have to find n(MPC),n(PMC)n(M \cap P' \cap C'),n(P \cap M ' \cap C'), n(CMP)n(C \cap M \cap P) Now n(MPC)n(M \cap P'\cap C') = n[M(PC)]n[M \cap(P \cup C) '] =n(M)n[(M(PC)]= n(M) - n[(M \cap (P\cup C)] =n(M)n[(MP)(MC)]= n(M) - n[(M \cap P)\cup (M \cap C)] =n(M)n(MP)n(MC)+n(MPC)= n(M) - n(M \cap P) - n(M \cap C) + n(M \cap P \cap C) =23129+4=2721=6= 23 - 12 - 9 + 4 = 27 - 21 = 6 n(PMC)=n[P(MC)]n(P\cap M ' \cap C') = n[P \cap (M \cup C) '] =n(P)n[P(MC)]= n(P) - n[P \cap (M \cup C)] =n(P)n[(PM)(PC)]= n(P) - n[(P \cap M)\cup (P \cap C)] =n(P)n(PM)n(PC)+n(PMC)= n(P) - n(P \cap M) - n(P \cap C) + n(P \cap M \cap C) =24127+4=9= 24 - 12 - 7 + 4 = 9 n(CMP)n(C \cap M ' \cap P') =n(C)n(CP)n(CM)+n(CPM)= n(C) - n(C \cap P) - n(C \cap M) + n(C \cap P \cap M) =1979+4=2316=7= 19 - 7 - 9 + 4 = 23 - 16 = 7