Solveeit Logo

Question

Physics Question on Moving charges and magnetism

In a circuit for finding the resistance of a galvanometer by half deflection method, a 6V6\, V battery and a high resistance of 11kΩ11 \, k\, \Omega are used. The figure of merit of the galvanometer is 60muA60 \, mu A division. In the absence of shunt resistance, the galvanometer produces a deflection of θ=9\theta = 9 divisions when current flows in the circuit. The value of the shunt resistance that can cause the deflection of θ/2\theta / 2, is closest to :

A

550Ω550 \, \Omega

B

220Ω220 \, \Omega

C

55Ω55 \, \Omega

D

110Ω110 \, \Omega

Answer

110Ω110 \, \Omega

Explanation

Solution

Current required by unit deflection is 60μA60\, \mu A
For, θ=9\theta=9 current is I=9×60μAI=9 \times 60\, \mu A
I=540μA=540×106A\Rightarrow I=540\, \mu A =540 \times 10^{-6} A
Let GG is resistance of galvanometer. Then,
540×106=6(11000+G)540 \times 10^{-6} =\frac{6}{(11000+G)}
[11000+G]90×106=1[11000+G] 90 \times 10^{-6}=1
99000+9G=10599000+9 G =10^{5}
9G=100000990009 G =100000-99000
9G=10009 G =1000
G=10009ΩG =\frac{1000}{9} \Omega
Also in half deflection method,
G=RSRSG =\frac{R S}{R-S}
10009=11000S11000S\Rightarrow \frac{1000}{9}=\frac{11000 S}{11000-S}
19=11S11000S\frac{1}{9} =\frac{11 S}{11000-S}
11000S=99S\Rightarrow 11000-S=99\, S
100S=11000S=110Ω100\, S =11000 \Rightarrow S=110\, \Omega