Solveeit Logo

Question

Question: In a circle of radius r, an isosceles triangle ABC is inscribed with AB = AC. If the ∆ABC has perime...

In a circle of radius r, an isosceles triangle ABC is inscribed with AB = AC. If the ∆ABC has perimeter p = 2 [2hrh2\sqrt{2hr - h^{2}}+2hr\sqrt{2hr}] and area A = h2hrh2\sqrt{2hr - h^{2}}, where h is the altitude from A to BC, thenAp3\frac{A}{p^{3}} is –

A

128 r

B

1128r\frac{1}{128r}

C

164r\frac{1}{64r}

D

None of these

Answer

1128r\frac{1}{128r}

Explanation

Solution

Ap3\frac { \mathrm { A } } { \mathrm { p } ^ { 3 } } = h2hrh28[2hrh2+2hr]3\frac { h \sqrt { 2 h r - h ^ { 2 } } } { 8 \left[ \sqrt { 2 h r - h ^ { 2 } } + \sqrt { 2 h r } \right] ^ { 3 } }

=

= 2rh8[2rh+2r]3\frac { \sqrt { 2 \mathrm { r } - \mathrm { h } } } { 8 [ \sqrt { 2 \mathrm { r } - \mathrm { h } } + \sqrt { 2 \mathrm { r } } ] ^ { 3 } }

= 2r8(22r)3\frac { \sqrt { 2 r } } { 8 ( 2 \sqrt { 2 r } ) ^ { 3 } } = 1128r\frac { 1 } { 128 \mathrm { r } } .

Hence (2) is the correct answer.