Solveeit Logo

Question

Question: In a circle of 5 feet radius, what is the length of the arc which subtends an angle of \({{33}^{\tex...

In a circle of 5 feet radius, what is the length of the arc which subtends an angle of 33o15{{33}^{\text{o}}}15' at the centre?

Explanation

Solution

Hint: We will apply the formula to find the length of an arc. The formula is given by L=θ360o×2πRL=\dfrac{\theta }{{{360}^{\text{o}}}}\times 2\pi R, where R is the radius of the circle and θ\theta is the angle that is measured for the arc of the circle.

Complete step-by-step answer:
The required diagram for the question is shown below.

Now, first we consider the angle which is given to us as 33o15{{33}^{\text{o}}}15'. Here, we will apply the formula to convert minutes into degrees as (1)o=60{{\left( 1 \right)}^{\text{o}}}=60' or 1 minute is divided into 1 by 60 degrees. Numerically, this is represented as (1)=(160)o\left( 1 \right)'={{\left( \dfrac{1}{60} \right)}^{\text{o}}}. As we can write 33o15{{33}^{\text{o}}}15' as 33o15=33o+15{{33}^{\text{o}}}15'={{33}^{\text{o}}}+15'. Therefore, after substituting the (1)=(160)o\left( 1 \right)'={{\left( \dfrac{1}{60} \right)}^{\text{o}}} in 33o15=33o+15{{33}^{\text{o}}}15'={{33}^{\text{o}}}+15' we will have,
33o15=33o+15 33o15=33o+(15×160)o 33o15=(33+1560)o 33o15=(1980+1560)o 33o15=(199560)o 33o15=(1334)o \begin{aligned} & {{33}^{\text{o}}}15'={{33}^{\text{o}}}+15' \\\ & \Rightarrow {{33}^{\text{o}}}15'={{33}^{\text{o}}}+{{\left( 15\times \dfrac{1}{60} \right)}^{\text{o}}} \\\ & \Rightarrow {{33}^{\text{o}}}15'={{\left( 33+\dfrac{15}{60} \right)}^{\text{o}}} \\\ & \Rightarrow {{33}^{\text{o}}}15'={{\left( \dfrac{1980+15}{60} \right)}^{\text{o}}} \\\ & \Rightarrow {{33}^{\text{o}}}15'={{\left( \dfrac{1995}{60} \right)}^{\text{o}}} \\\ & \Rightarrow {{33}^{\text{o}}}15'={{\left( \dfrac{133}{4} \right)}^{\text{o}}} \\\ \end{aligned}
Now, we have degree of the circle as θ=(1334)o\theta ={{\left( \dfrac{133}{4} \right)}^{\text{o}}} and we are already given the value of radius of the circle as R = 5 feet. Therefore, we can now apply the formula to find the length of an arc. The formula is given by L=θ360o×2πRL=\dfrac{\theta }{{{360}^{\text{o}}}}\times 2\pi R, where R is the radius of the circle and θ\theta is the angle that is measured for the arc of the circle.
Therefore, the length of the arc is given by,
L=θ360o×2πR L=(1334)o360o×2π5 L=(133)o360o×4o×2π5 L=13372×2×π L=133144×π L=133144π \begin{aligned} & L=\dfrac{\theta }{{{360}^{\text{o}}}}\times 2\pi R \\\ & \Rightarrow L=\dfrac{{{\left( \dfrac{133}{4} \right)}^{\text{o}}}}{{{360}^{\text{o}}}}\times 2\pi 5 \\\ & \Rightarrow L=\dfrac{{{\left( 133 \right)}^{\text{o}}}}{{{360}^{\text{o}}}\times {{4}^{\text{o}}}}\times 2\pi 5 \\\ & \Rightarrow L=\dfrac{133}{72\times 2}\times \pi \\\ & \Rightarrow L=\dfrac{133}{144}\times \pi \\\ & \Rightarrow L=\dfrac{133}{144}\pi \\\ \end{aligned}
After this we will substitute π=227\pi =\dfrac{22}{7} in L=133144πL=\dfrac{133}{144}\pi . Therefore, we get
L=133144π L=133144×227 L=1972×111 L=20972 \begin{aligned} & L=\dfrac{133}{144}\pi \\\ & \Rightarrow L=\dfrac{133}{144}\times \dfrac{22}{7} \\\ & \Rightarrow L=\dfrac{19}{72}\times \dfrac{11}{1} \\\ & \Rightarrow L=\dfrac{209}{72} \\\ \end{aligned}
Hence, the length of the arc of the circle is given by L=20972L=\dfrac{209}{72}.

Note: If we don’t want our answer in fraction then we will not stop with L=20972L=\dfrac{209}{72}. We will convert it into decimals after dividing the numerator by denominator. Thus, we get L=2.90L=2.90 which is an approximate value. We could have also substituted π=3.14\pi =3.14 instead of π=227\pi =\dfrac{22}{7} in L=133144πL=\dfrac{133}{144}\pi . Therefore, we get
L=133144π L=133144×3.14 L=0.92×3.14 L=2.8888 \begin{aligned} & L=\dfrac{133}{144}\pi \\\ & \Rightarrow L=\dfrac{133}{144}\times 3.14 \\\ & \Rightarrow L=0.92\times 3.14 \\\ & \Rightarrow L=2.8888 \\\ \end{aligned}