Solveeit Logo

Question

Physics Question on Motion in a straight line

In a car race on straight road, car AA takes a time tt less than car BB at the finish and passes finishing point with a speed v'v' more than that of car BB. Both the cars start from rest and travel with constant acceleration a1a_1 and a2a_2 respectively. Then v'v' is equal to :

A

a1+a22t\frac{a_{1} + a_{2}}{2} t

B

2a1a2t\sqrt{2 a_1 a_2 } t

C

2a1a2a1+a2t\frac{2 a_1 a_2}{a_1 + a_2} t

D

a1a2t\sqrt{a_1 a_2 } t

Answer

a1a2t\sqrt{a_1 a_2 } t

Explanation

Solution

For AA & BB let time taken by AA is t0t_0
from ques.
vAvB=v=(a1a2)t0a2tv_{A} - v_{B} = v =\left(a_{1} -a_{2}\right)t_{0} -a_{2}t ....(i)
xB=xA=12a1t02=12a2(t0+t)2x_{B} =x_{A} = \frac{1}{2} a_{1} t_{0}^{2} = \frac{1}{2} a_{2} \left(t_{0} +t\right)^{2}
a1t0=a2(t0+t)\Rightarrow \sqrt{a_{1}t_{0}} = \sqrt{a_{2} } \left(t_{0} +t\right)
(a2a2)t0=a2t\Rightarrow \left(\sqrt{a_{2}} - \sqrt{a_{2}}\right)t_{0} = \sqrt{a_{2}t} ......(ii)
putting t0t_0 in equation
v=(a1a2)a2ta1a2a2tv = \left(a_{1} -a_{2}\right) \frac{\sqrt{a_{2}t}}{\sqrt{a_{1} } -\sqrt{a_{2}}} -a_{2} t
=(a1+a2)a2ta2tv=a1a2t= \left(\sqrt{a_{1}} + \sqrt{a_{2}}\right) \sqrt{a_{2}t} - a_{2} t \Rightarrow v = \sqrt{a_{1}a_{2}t}
a1a2t+a2ta2t\Rightarrow \sqrt{a_{1}a_{2}t} + a_{2}t - a_{2}t