Question
Question: In a box, there are \( 10 \) balls, \( 4 \) are red, \( 3 \) black, \( 2 \) white and \( 1 \) yellow...
In a box, there are 10 balls, 4 are red, 3 black, 2 white and 1 yellow. In how many ways can a child select 4 balls out of these 10 balls? (Assume that the balls of the same colour are identical).
(A) 10
(B) 15
(C) 20
(D) 25
Solution
Hint : We can write a polynomial expression of degree to denote the possible ways of selecting any ball. Where the degree of x represents the number of balls drowned.
Complete step-by-step answer :
If we have n balls.
Then minimum number of balls
We can select is 0
And the maximum number of balls we can select is n.
To find the number of ways to select the ball from 0 to n numbers
We can use the formula
Number of ways to select 0 to n number of balls =1+x+x2+x3+....+xn …………. (1)
Where, degree of x denotes the number of balls that we have to select.
Now, consider the question.
We have 1 yellow ball.
So, using equation (1)
The number of ways to select 0 and 1 yellow ball
=1+x ………… (2)
We have 2 white balls
So, using equation (1)
The number of ways to select 0 to 2 white balls
=1+x+x2 ……….. (3)
We have 3 black balls
So, using equation (1)
The number of ways to select 0 to 3 black balls
=1+x+x2+x3 ……… (4)
We have 4 red balls
So, using equation (1)
The number of ways to select 0 to 4 red balls
=1+x+x2+x3+x4 ……….. (5)
Total number of possible ways of selecting any number of balls is the product of all possible ways for selecting all the balls.
=(1+x)(1+x+x2)(1+x+x2+x3)(1+x+x2+x3+x4)
Open first two and last two brackets
=(1+x+x2+x+x2+x3)(1+x+x2+x3+x4+x+x2+x3+x4+x5+x2+x3+x4+x5+x6+x3+x4+x5+x6+x7)
=(1+2x+2x2+x3)(1+2x+3x2+4x3+4x4+3x5+2x6+x7)
Now, open these to brackets as well
We need a number of ways of selecting 4 balls.
This is represented by the coefficient of x4.
Therefore, we should add the coefficients of x4.
This can be above by neglecting all other terms.
=(4+8+6+2)x4
=20x4
Therefore, there are 20 ways to select 4 balls out of 10 given balls.
Therefore, from the above explanation the correct option is (C) 20.
So, the correct answer is “Option C”.
Note : We could have avoided the lengthy calculation by negating all the terms that have a degree of x greater than 4. because, we only 0 needed to calculate the number of ways of selecting 4 balls.
This would have saved us from writing equation (4).