Solveeit Logo

Question

Mathematics Question on Conditional Probability

In a binomial distribution B(n.p=14)B\left(n. p=\frac{1}{4}\right), if the probability of at least one success is greater than or equal to 910\frac{9}{10}, then n is greater than

A

1log104log103\frac{1}{log_{10} 4-log_{10}3}

B

1log104+log103\frac{1}{log_{10} 4 +log_{10}3}

C

9log104log103\frac{9}{log_{10}4-log_{10}3}

D

4log104log103\frac{4}{log_{10}4-log_{10}3}

Answer

1log104log103\frac{1}{log_{10} 4-log_{10}3}

Explanation

Solution

1qn9101-q^{n} \ge \frac{9}{10} (34)n110\Rightarrow \left(\frac{3}{4}\right)^{n} \le \frac{1}{10} nlog3410\Rightarrow n \ge-log_{\frac{3}{4}}\,10 n1log104log103 \Rightarrow n\ge\frac{1}{log_{10}^{4}-log^{3}_{10}}