Solveeit Logo

Question

Question: In a binomial distribution\(B\left( {n,p = \dfrac{1}{4}} \right)\), if the probability of at least o...

In a binomial distributionB(n,p=14)B\left( {n,p = \dfrac{1}{4}} \right), if the probability of at least one success is greater than or equal to 910\dfrac{9}{{10}} then is greater than-
A.1log104log103 B.1log104+log103 C.9log104log103 D.4log104log103  {\text{A}}{\text{.}}\dfrac{1}{{{{\log }_{10}}4 - {{\log }_{10}}3}} \\\ {\text{B}}{\text{.}}\dfrac{1}{{{{\log }_{10}}4 + {{\log }_{10}}3}} \\\ {\text{C}}{\text{.}}\dfrac{9}{{{{\log }_{10}}4 - {{\log }_{10}}3}} \\\ {\text{D}}{\text{.}}\dfrac{4}{{{{\log }_{10}}4 - {{\log }_{10}}3}} \\\

Explanation

Solution

As we are given with P(at least one) use [1 – P(none)]. Apply binomial distribution formula for probability of favorable success, and form the required inequality.

Complete step-by-step answer :
We are given with-
p = 14\dfrac{1}{4} if p is given then q = [1-p] = 114=341 - \dfrac{1}{4} = \dfrac{3}{4}

It is given that P(at least one)910P\left( {{\text{at least one}}} \right) \geqslant \dfrac{9}{{10}} which is equivalent to-
1P(none)9101 - P\left( {none} \right) \geqslant \dfrac{9}{{10}}
The binomial distribution for 0 success would be given by-
nC0p0qn0=1.1.(34)n{}^n{C_0}{p^0}{q^{n - 0}} = 1.1.{\left( {\dfrac{3}{4}} \right)^n}
As per the given condition,
=1(34)n910 =1910(34)n =110(34)n Taking log both the sides in order to find n  = log(110)log((34)n) =1n[log(3)log(4)] multiplying by - 1 on both sides  = 1n[log(4)log(3)] =1[log(4)log(3)]n  = 1 - {\left( {\dfrac{3}{4}} \right)^n} \geqslant \dfrac{9}{{10}} \\\ = 1 - \dfrac{9}{{10}} \geqslant {\left( {\dfrac{3}{4}} \right)^n} \\\ = \dfrac{1}{{10}} \geqslant {\left( {\dfrac{3}{4}} \right)^n} \\\ {\text{Taking log both the sides in order to find n}} \\\ {\text{ = log}}\left( {\dfrac{1}{{10}}} \right) \geqslant \log \left( {{{\left( {\dfrac{3}{4}} \right)}^n}} \right) \\\ = - 1 \geqslant n\left[ {\log \left( 3 \right) - \log \left( 4 \right)} \right] \\\ {\text{multiplying by - 1 on both sides}} \\\ {\text{ = 1}} \leqslant n\left[ {\log \left( 4 \right) - \log \left( 3 \right)} \right] \\\ = \dfrac{1}{{\left[ {\log \left( 4 \right) - \log \left( 3 \right)} \right]}} \leqslant n \\\
So, the correct option is A.

Note : Instead of P(at least one), we took [1-P(none)] since it is easy to calculate the probability of 0 success instead of counting the possibilities of success in these cases.