Solveeit Logo

Question

Question: In a ∆ABC, let ∠C= \(\frac { \pi } { 2 }\) . If r and R are the inradius and the circumradius resp...

In a ∆ABC, let ∠C= π2\frac { \pi } { 2 } . If r and R are the inradius and the

circumradius respectively of the triangle then 2(r + R) is equal

to –

A

a + b

B

b + c

C

c + a

D

a + b + c

Answer

a + b

Explanation

Solution

Here, R = OA = OB = OC = 12\frac { 1 } { 2 } AB = c2\frac { \mathrm { c } } { 2 }

r = Δs\frac { \Delta } { \mathrm { s } } = =

∴ r + R = aba+b+c\frac { a b } { a + b + c } + c2\frac { \mathrm { c } } { 2 }

= 2ab+c(a+b+c)2(a+b+c)\frac { 2 a b + c ( a + b + c ) } { 2 ( a + b + c ) }

= (Q c2 = a2 + b2)

= =

∴ 2 (r + R) = a + b