Solveeit Logo

Question

Question: In a ∆ABC, b<sup>2</sup>+ c<sup>2</sup> = 1999a<sup>2</sup>, then \(\frac { \cot \mathrm { B } + \c...

In a ∆ABC, b2+ c2 = 1999a2, then cotB+cotCcotA=\frac { \cot \mathrm { B } + \cot \mathrm { C } } { \cot \mathrm { A } } =

A

1999\frac { 1 } { 999 }

B

11999\frac { 1 } { 1999 }

C

999

D

1999

Answer

1999\frac { 1 } { 999 }

Explanation

Solution

cotB+cotCcotA=cosBsinB+cosCsinCcosA/sinA=sin(B+C)sinAcosAsinBsinC\frac { \cot B + \cot C } { \cot A } = \frac { \frac { \cos B } { \sin B } + \frac { \cos C } { \sin C } } { \cos A / \sin A } = \frac { \sin ( B + C ) \sin A } { \cos A \sin B \sin C } 2a2(b2+c2a2)\frac { 2 a ^ { 2 } } { \left( b ^ { 2 } + c ^ { 2 } - a ^ { 2 } \right) }