Solveeit Logo

Question

Question: In a 7.0 L evacuated chamber, 0.50 mol H$_2$ and 0.50 mol I$_2$ react at 427°C. H$_2$(g) + I$_2$(g) ...

In a 7.0 L evacuated chamber, 0.50 mol H2_2 and 0.50 mol I2_2 react at 427°C. H2_2(g) + I2_2(g) \rightleftharpoons 2HI(g). At the given temperature, KC_C = 49 for the reaction. What is the partial pressure (atm) of HI in the equilibrium mixture?

Answer

6.4 atm

Explanation

Solution

  1. The change in the number of moles of gas (Δn\Delta n) for the reaction H2(g)+I2(g)2HI(g)H_2(g) + I_2(g) \rightleftharpoons 2HI(g) is 2(1+1)=02 - (1+1) = 0. Therefore, KP=KC=49K_P = K_C = 49.
  2. Calculate the initial molar concentrations of H2H_2 and I2I_2: [H2]0=[I2]0=0.50 mol7.0 L=114[H_2]_0 = [I_2]_0 = \frac{0.50 \text{ mol}}{7.0 \text{ L}} = \frac{1}{14} M.
  3. Let the equilibrium concentration of HI be yy. Then, [H2]eq=[I2]eq=114y2[H_2]_{eq} = [I_2]_{eq} = \frac{1}{14} - \frac{y}{2}.
  4. Substitute these into the KCK_C expression: KC=[HI]2[H2][I2]    49=y2(114y2)2K_C = \frac{[HI]^2}{[H_2][I_2]} \implies 49 = \frac{y^2}{(\frac{1}{14} - \frac{y}{2})^2}.
  5. Taking the square root of both sides: 7=y114y27 = \frac{y}{\frac{1}{14} - \frac{y}{2}}.
  6. Solve for yy: y=19y = \frac{1}{9} M.
  7. Calculate the partial pressure of HI using the ideal gas law: T=427C+273=700T = 427^\circ\text{C} + 273 = 700 K. PHI=[HI]eqRT=19×0.0821×7006.3856P_{HI} = [HI]_{eq}RT = \frac{1}{9} \times 0.0821 \times 700 \approx 6.3856 atm.
  8. Rounding to two significant figures, the partial pressure of HI is 6.46.4 atm.