Solveeit Logo

Question

Production Engineering (Manufacturing) Question on Machine Tools

In a 2-DOF (RP) manipulator, the joint link parameters are given asLink iaiαi\alpha_idiθi\theta_i
109090\degree0θ1\theta_1
200d20
The final transformation matrix for this manipulator is S
A

[C10S10 S10C10 0100 0001]\begin{bmatrix} C_1 & 0 & S_1 & 0\\\ S_1 & 0 & -C_1 & 0\\\ 0 & 1 & 0 & 0\\\ 0 &0 & 0 & 1 \end{bmatrix}

B

[1000 0100 001d2 0001]\begin{bmatrix} 1 & 0 & 0 & 0\\\ 0 & 1 & 0 & 0\\\ 0 & 0 & 1 & d_2\\\ 0 &0 & 0 & 1 \end{bmatrix}

C

[C10S10 S10C10 010d2 0001]\begin{bmatrix} C_1 & 0 & S_1 & 0\\\ S_1 & 0 & -C_1 & 0\\\ 0 & 1 & 0 & d_2\\\ 0 &0 & 0 & 1 \end{bmatrix}

D

[C10S1d2S1 S10C1d2C1 0100 0001]\begin{bmatrix} C_1 & 0 & S_1 & d_2S_1\\\ S_1 & 0 & -C_1 & -d_2C_1\\\ 0 & 1 & 0 & 0\\\ 0 &0 & 0 & 1 \end{bmatrix}

Answer

[C10S1d2S1 S10C1d2C1 0100 0001]\begin{bmatrix} C_1 & 0 & S_1 & d_2S_1\\\ S_1 & 0 & -C_1 & -d_2C_1\\\ 0 & 1 & 0 & 0\\\ 0 &0 & 0 & 1 \end{bmatrix}

Explanation

Solution

The correct option is (D): [C10S1d2S1 S10C1d2C1 0100 0001]\begin{bmatrix} C_1 & 0 & S_1 & d_2S_1\\\ S_1 & 0 & -C_1 & -d_2C_1\\\ 0 & 1 & 0 & 0\\\ 0 &0 & 0 & 1 \end{bmatrix}