Solveeit Logo

Question

Chemistry Question on Electrochemistry

Impure copper containing Fe,Au,AgFe, Au, Ag as impurities is electrolytically refined. A current of 140A140\, A for 482.5s482.5 \,s decreased the mass of the anode by 22.26g22.26\, g and increased the mass of cathode by 22.011g22.011\, g. Percentage of iron in impure copper is (Given molar mass Fe=55.5gFe = 55.5 \,g mol1mol^{-1}, molar mass Cu=63.54gmol1Cu \,= \,63.54\, g \, mol^{-1})

A

0.850.85

B

0.800.80

C

0.950.95

D

0.900.90

Answer

0.900.90

Explanation

Solution

Amount of impurity

=decreased mass of anode

- increased mass of cathode

=22.2622.011=22.26-22.011
=0.249g=0.249\, g

Amount of pure Cu deposited,

W=ZitW =Z i t
=E96500×it=\frac{E}{96500} \times i t
=63.542×96500×140×482.5=\frac{63.54}{2 \times 96500} \times 140 \times 482.5
=22.239g=22.239\, g

But increased mass of cathode =22.011g=22.011\, g
\therefore Amount of impurity (Fe)

=22.23922.011=0.228g=22.239-22.011=0.228\, g

Now, from Faraday's second law of electrolysis

 Wt. of Fe deposited  Wt. of Cu deposited = E wt. of Fe E wt. of Cu\frac{\text { Wt. of Fe deposited }}{\text { Wt. of Cu deposited }}=\frac{\text { E wt. of } Fe }{\text { E wt. of } Cu }

(\approx amount of impurity)

 Wt. of Fe deposited 0.228=27.5531.77\frac{\text { Wt. of Fe deposited }}{0.228}=\frac{27.55}{31.77}
\therefore Wt. of Fe=27.75×0.22831.77=0.199F e=\frac{27.75 \times 0.228}{31.77}=0.199
%\therefore \% of iron in impure copper

=0.19922.26×100=\frac{0.199}{22.26} \times 100
=0.890.90=0.89 \approx 0.90