Solveeit Logo

Question

Question: \(( a + b + c ) ( \cos A + \cos B + \cos C ) =\)...

(a+b+c)(cosA+cosB+cosC)=( a + b + c ) ( \cos A + \cos B + \cos C ) =

A

asin2A2\sum a \sin ^ { 2 } \frac { A } { 2 }

B

acos2A2\sum a \cos ^ { 2 } \frac { A } { 2 }

C

2asin2A22 \sum a \sin ^ { 2 } \frac { A } { 2 }

D

2acos2A22 \sum a \cos ^ { 2 } \frac { A } { 2 }

Answer

2acos2A22 \sum a \cos ^ { 2 } \frac { A } { 2 }

Explanation

Solution

(a+b+c)(cosA+cosB+cosC)=9( a + b + c ) ( \cos A + \cos B + \cos C ) = 9 terms.

=

=acosA+bcosB+ccosC+(a+b+c)a \cos A + b \cos B + c \cos C + ( a + b + c )

= a(1+cosA)=2acos2A2\sum a ( 1 + \cos A ) = 2 \sum a \cos ^ { 2 } \frac { A } { 2 }.