Solveeit Logo

Question

Question: \(\int _ { 3 } ^ { 6 } \frac { 1 } { x + 1 } d x\) is equal to...

361x+1dx\int _ { 3 } ^ { 6 } \frac { 1 } { x + 1 } d x is equal to

A

[log(x+1)]36[ \log ( x + 1 ) ] _ { 3 } ^ { 6 }

B

[log(t+1]36\left[ \log ( t + 1 ] _ { 3 } ^ { 6 } \right.

C

Both (1) and (2)

D

None of these

Answer

Both (1) and (2)

Explanation

Solution

I=361x+1dx=[log(x+1)]36I = \int _ { 3 } ^ { 6 } \frac { 1 } { x + 1 } d x = [ \log ( x + 1 ) ] _ { 3 } ^ { 6 }, I=361t+1dt=[log(t+1)]36I = \int _ { 3 } ^ { 6 } \frac { 1 } { t + 1 } d t = [ \log ( t + 1 ) ] _ { 3 } ^ { 6 }

(2) abf(x)dx=baf(x)dx\int _ { a } ^ { b } f ( x ) d x = - \int _ { b } ^ { a } f ( x ) d x i.e., by the interchange in the limits of definite integral, the sign of the integral is changed.