Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { \pi / 2 } \frac { \sqrt { \tan x } } { 1 + \sqrt { \tan x } } = \int _ { 0 } ^ { ...

0π/2tanx1+tanx=0π/2sinxsinx+cosxdx\int _ { 0 } ^ { \pi / 2 } \frac { \sqrt { \tan x } } { 1 + \sqrt { \tan x } } = \int _ { 0 } ^ { \pi / 2 } \frac { \sqrt { \sin x } } { \sqrt { \sin x } + \sqrt { \cos x } } d x is equal to

A

π/4

B

C

–1

D

1

Answer

π/4

Explanation

Solution

We know, 0π/2tannxdx1+tannx=π4\int _ { 0 } ^ { \pi / 2 } \frac { \tan ^ { n } x d x } { 1 + \tan ^ { n } x } = \frac { \pi } { 4 } for any value of n

I=π/4I = \pi / 4.

(5) aaf(x)dx=0af(x)+f(x)dx\int _ { - a } ^ { a } f ( x ) d x = \int _ { 0 } ^ { a } f ( x ) + f ( - x ) d x.

In special case : This property is generally used when integrand is either even or odd function of x.