Solveeit Logo

Question

Question: \(\int _ { 0 } ^ { \pi / 2 } | \sin x - \cos x | d x\) is equal to...

0π/2sinxcosxdx\int _ { 0 } ^ { \pi / 2 } | \sin x - \cos x | d x is equal to

A

0

B

2\sqrt { 2 }– 1

C

2(2\sqrt { 2 }– 1)

D

2( 2\sqrt { 2 } + 1)

Answer

2(2\sqrt { 2 }– 1)

Explanation

Solution

I = 0π/2f(x)dx\int _ { 0 } ^ { \pi / 2 } \mathrm { f } ( \mathrm { x } ) \mathrm { dx } +

where f(x) = |sin x – cos x|

=0π/4(cosxsinx)dx\int _ { 0 } ^ { \pi / 4 } ( \cos x - \sin x ) d x+π/4π/2(sinxcosx)dx\int _ { \pi / 4 } ^ { \pi / 2 } ( \sin x - \cos x ) d x

= [sinx+cosx]0π/4[ \sin x + \cos x ] _ { 0 } ^ { \pi / 4 } + [cosxsinx]π/4π/2[ - \cos x - \sin x ] _ { \pi / 4 } ^ { \pi / 2 }

= 2(12)\left( \frac { 1 } { \sqrt { 2 } } \right) – 1 + (– 1) + 2 (12)\left( \frac { 1 } { \sqrt { 2 } } \right) = 2(21)( \sqrt { 2 } - 1 )