Solveeit Logo

Question

Question: \(\int \frac { 3 + 2 \cos x } { ( 2 + 3 \cos x ) ^ { 2 } } d x\) is equal to...

3+2cosx(2+3cosx)2dx\int \frac { 3 + 2 \cos x } { ( 2 + 3 \cos x ) ^ { 2 } } d x is equal to

A

(sinx3cosx+2)+c\left( \frac { \sin x } { 3 \cos x + 2 } \right) + c

B
C

(2cosx3cosx+2)+c\left( \frac { 2 \cos x } { 3 \cos x + 2 } \right) + c

D

(2sinx3sinx+2)+c\left( \frac { 2 \sin x } { 3 \sin x + 2 } \right) + c

Answer

(sinx3cosx+2)+c\left( \frac { \sin x } { 3 \cos x + 2 } \right) + c

Explanation

Solution

Let I = 3+2cosx(2+3cosx)2dx\int \frac { 3 + 2 \cos x } { ( 2 + 3 \cos x ) ^ { 2 } } d x Multiplying Nr. & Dr. by cosec2x ⇒ I =(3cosec2x+2cotxcosecx)(2cosecx+3cotx)2\int \frac { \left( 3 \operatorname { cosec } ^ { 2 } x + 2 \cot x \operatorname { cosec } x \right) } { ( 2 \operatorname { cosec } x + 3 \cot x ) ^ { 2 } }dx

= –3cosec2x2cotxcosecx(2cosecx+3cotx)2\int \frac { - 3 \operatorname { cosec } ^ { 2 } x - 2 \cot x \operatorname { cosec } x } { ( 2 \operatorname { cosec } x + 3 \cot x ) ^ { 2 } }dx

= 12cosecx+3cotx\frac { 1 } { 2 \operatorname { cosec } x + 3 \cot x } = (sinx2+3cosx)+c\left( \frac { \sin x } { 2 + 3 \cos x } \right) + c

Alternative Solution:

I = 3sin2x+3cos2x+2cosx(2+3cosx)2dx\int \frac { 3 \sin ^ { 2 } x + 3 \cos ^ { 2 } x + 2 \cos x } { ( 2 + 3 \cos x ) ^ { 2 } } d x

= cosx(2+3cosx)dx+3sinxsinx(2+3cosx)2dx\int \frac { \cos x } { ( 2 + 3 \cos x ) } d x + \int \frac { 3 \sin x \cdot \sin x } { ( 2 + 3 \cos x ) ^ { 2 } } d x

= cosx2+3cosxdx+sinx2+3cosxcosx2+3cosxdx=sinx2+3cosx+c\int \frac { \cos x } { 2 + 3 \cos x } d x + \frac { \sin x } { 2 + 3 \cos x } - \int \frac { \cos x } { 2 + 3 \cos x } d x = \frac { \sin x } { 2 + 3 \cos x } + c