Solveeit Logo

Question

Question: Imaginary part of \({\cos h}(\alpha + i\beta) - {\cos h}(\alpha - i\beta) =\)...

Imaginary part of cosh(α+iβ)cosh(αiβ)={\cos h}(\alpha + i\beta) - {\cos h}(\alpha - i\beta) =

A

2sinhαsinhβ2\sinh\alpha\sinh\beta

B

2sinhαsinβ2{\sin h}\alpha\sin\beta

C

coshαcosβ\cosh\alpha\cos\beta

D

2cosαcoshβ2\cos\alpha{\cos h}\beta

Answer

2sinhαsinβ2{\sin h}\alpha\sin\beta

Explanation

Solution

cosh(α+iβ)cosh(αiβ)=2sinhαsinh(iβ){\cos h}(\alpha + i\beta) - {\cos h}(\alpha - i\beta) = 2{\sin h}\alpha{\sin h}(i\beta)

=2sinhα.isinβ=2isinhsinβ= 2{\sin h}\alpha.i\sin\beta = 2i{\sin h}{\sin\beta}

∴ Imaginary part =2sinhαsinβ= 2{\sin h}\alpha\sin\beta.