Solveeit Logo

Question

Question: Image point of \((1,3,4)\) in the plane \(2x - y + z + 3 = 0\) is...

Image point of (1,3,4)(1,3,4) in the plane 2xy+z+3=02x - y + z + 3 = 0 is

A

(– 3, 5, 2)

B

(3, 5, – 2)

C

(3, – 5, 3)

D

None of these

Answer

(– 3, 5, 2)

Explanation

Solution

Let Q be image of the point P(1,3,4)P ( 1,3,4 ) in the given plane, then PQ is normal to the plane.

The d.r.'s of PQ are 2, –1,1

Since PQ passes through (1, 3, 4) and has d.r's 2, 1, –1;

therefore, equation of plane is x12=y31=z41=r\frac { x - 1 } { 2 } = \frac { y - 3 } { - 1 } = \frac { z - 4 } { 1 } = r, (say)

\therefore x=2r+1,y=r+3,z=r+4x = 2 r + 1 , y = - r + 3 , z = r + 4

So, co-ordinates of Q be

(2r+1,r+3,r+4)( 2 r + 1 , - r + 3 , r + 4 )

Let R be the mid point of PQ, then co-ordiantes of R are (2r+1+12,r+3+32,r+4+42)\left( \frac { 2 r + 1 + 1 } { 2 } , \frac { - r + 3 + 3 } { 2 } , \frac { r + 4 + 4 } { 2 } \right)i.e., (r+1,r+62,r+82)\left( r + 1 , \frac { - r + 6 } { 2 } , \frac { r + 8 } { 2 } \right)

Since R lies on the plane

\therefore 2(r+1)(r+62)+(r+82)+3=02 ( r + 1 ) - \left( \frac { - r + 6 } { 2 } \right) + \left( \frac { r + 8 } { 2 } \right) + 3 = 0r=2r = - 2

So, co-ordinates of Q are (–3, 5, 2).

Trick : From option (1), mid point of (–3, 5, 2) and (1,3,4) satisfies the equation of plane 2xy+z+3=02 x - y + z + 3 = 0 .