Solveeit Logo

Question

Question: \(i\log\left( \frac{x - i}{x + i} \right)\) is equal to...

ilog(xix+i)i\log\left( \frac{x - i}{x + i} \right) is equal to

A

π+2tan1x\pi + 2\tan^{- 1}x

B

π2tan1x\pi - 2\tan^{- 1}x

C

π+2tan1x- \pi + 2\tan^{- 1}x

D

π2tan1x- \pi - 2\tan^{- 1}x

Answer

π2tan1x\pi - 2\tan^{- 1}x

Explanation

Solution

Sol. Let z=ilog(xix+i)z = i\log\left( \frac{x - i}{x + i} \right)zi=log(xix+i)\frac{z}{i} = \log\left( \frac{x - i}{x + i} \right)

zi=log[xix+i×xixi]=log[x212ixx2+1]\frac{z}{i} = \log\left\lbrack \frac{x - i}{x + i} \times \frac{x - i}{x - i} \right\rbrack = \log\left\lbrack \frac{x^{2} - 1 - 2ix}{x^{2} + 1} \right\rbrack

zi=log[x21x2+1i2xx2+1]\frac{z}{i} = \log\left\lbrack \frac{x^{2} - 1}{x^{2} + 1} - i\frac{2x}{x^{2} + 1} \right\rbrack .....(i)

log(a+ib)=log(reiθ)=logr+iθ\log(a + ib) = \log(re^{i\theta}) = \log r + i\theta =loga2+b2+itan1(ba)= \log\sqrt{a^{2} + b^{2}} + i\tan^{- 1}\left( \frac{b}{a} \right)

Hence zi=log(x21x2+1)2+(2xx2+1)2+itan1(2xx21)\frac{z}{i} = \log\sqrt{\left( \frac{x^{2} - 1}{x^{2} + 1} \right)^{2} + \left( \frac{- 2x}{x^{2} + 1} \right)^{2}} + i\tan^{- 1}\left( \frac{- 2x}{x^{2} - 1} \right)

(By equation (i))

zi=logx4+12x2+4x2(x2+1)2+itan1(2x1x2)=log1+i(2tan1x)=0+i(tan1x)\frac{z}{i} = \log\frac{\sqrt{x^{4} + 1 - 2x^{2} + 4x^{2}}}{(x^{2} + 1)^{2}} + i\tan^{- 1}\left( \frac{2x}{1 - x^{2}} \right) = \log 1 + i(2\tan^{- 1}x) = 0 + i(\tan^{- 1}x)z=i22tan1x=2tan1x=π2tan1x.z = i^{2}2\tan^{- 1}x = - 2\tan^{- 1}x = \pi - 2\tan^{- 1}x.