Question
Question: \(i\log\left( \frac{x - i}{x + i} \right)\) is equal to...
ilog(x+ix−i) is equal to
A
π+2tan−1x
B
π−2tan−1x
C
−π+2tan−1x
D
−π−2tan−1x
Answer
π−2tan−1x
Explanation
Solution
Sol. Let z=ilog(x+ix−i)⇒ iz=log(x+ix−i)
⇒ iz=log[x+ix−i×x−ix−i]=log[x2+1x2−1−2ix]
⇒ iz=log[x2+1x2−1−ix2+12x] .....(i)
∵ log(a+ib)=log(reiθ)=logr+iθ =loga2+b2+itan−1(ab)
Hence iz=log(x2+1x2−1)2+(x2+1−2x)2+itan−1(x2−1−2x)
(By equation (i))
iz=log(x2+1)2x4+1−2x2+4x2+itan−1(1−x22x)=log1+i(2tan−1x)=0+i(tan−1x) ∴ z=i22tan−1x=−2tan−1x=π−2tan−1x.